The challenge of TIC regulations for Green IT

Olivier Ridoux Université de Rennes 1 / IRISA

Objective

Technics alone does no good...
 ...think Green IT politically as well as technically

• Imagine what could be Green IT regulations...
...regulations that consider IT equipment as
more than complex lumps of complex material

Summary

 Sustainable development, IT, Green IT technology

Sustainable development, IT, Green IT politics

The technology of Green IT

Green IT = Sustainable development of IT

- 3 pillars
 - environment,economy andsociety
- 1 condition
 - educationand transparency

- Tools
 - life cycle assessment
 - monitoring
 - regulations

A bias for energy issues

 The environmental pillar is more popular than the two others

 Energy issues are over-popular among the environmental issues

E3 - RSD

Technology vs politics

Why is energy an issue?

- Environmental impact, GHG
- Limited nonrenewable resource
- Rivalrous resource

- Other resources share these properties
- Energy, easier to grasp, to measure?

Energy as an issue

Renewability as an issue

- Pré-industrial water-mills exploit a
 - non-rivalrous source of energy?
 - renewable source of energy?

Revalry between water-mills,
 and between water-mills and other users

Copper is an issue too

- Copper is a critical resource
 - 42% used for IT,
 - only mildly recyclable,
 - limited reserves,
 - Chile possesses more than 30% of resource
- Copper mining uses lots of water in areas where it is rare...
- ...impact on an Indian reserve in Arizona

Platinum too...

- Platinum is a critical resource
 - used for hard drives and fiber,
 - RSA possesses more than 75% of reserves
- 4 months strike for better wages
 - prices raise from \$20 to \$1500 /oz

A tool: life cycle assessment

LCA

- definition of perimeter: functional unit
- inventory et quantitative study
- analyse of impact
- interpretation of results

Functional unit (1)

- Unit of end-user service
- Normalized for easy comparison
 - (extra-)urban driving cycle
 - energy class of home appliances
- Difficult to design for IT systems

Functional unit (2)

 Too often, improvements target measures that do not refer to a functional unit

- PUE

- peak energy efficiency = $\frac{\text{max FU}}{\text{power}}$

Hardware improvements vs software

• Often, hardware improvements do not go through to the end-user...

...software dampens improvement

$$\frac{\text{power}}{\text{op}} \supset \text{but } \frac{\text{op}}{\text{FU}} \nearrow \nearrow \text{hence } \frac{\text{power}}{\text{FU}} \nearrow$$

...lack of precise software LCA

Technology improvement wants political guidance

- Improvements in life cycle may have undesired indirect impact
 - rebound effect when improvement augments usability more than it augments efficiency
 - move problems somewhere else
 - parasitic behaviour of a component
- Requires political control

Rebound effects (1)

Jevons: steam-engine consumption

 \(\simega \)
 though coal consumption

 \(\simega \)

(#steam engine ↗↗)

In IT: flat display consumption

 \(\simeq \)
 though total consumption

 \(\simeq \)

(total area ↗↗)

Rebound effects (2)

Moore law: computation consumption

 \(\sigma \)
 though computers consumption
 \(\sigma \)

(#computers **↗**↗)

Internet: consumption per bit

 \(\sigma \)
 though total consumption

 \(\sigma \)

(#bits **↗**↗)

Rebound effects (3)

- A prediction
- IoT: unit consumption

 \(\sigma \)
 though total consumption

 \(\sigma \)

(#connected objects ↗↗)

Displacing the problem

In IT: flat display usage consumption

 \int \text{though total consumption } \int \text{T}

(manufacture consumption 77)

Externalization: client consumption

 \int \text{though total consumption
 \int \text{?}

(servers and network ↗↗)

Parasitic behaviour

Software bloat: energy per instruction

 \(\sigma \)
 though energy per UF

 \(\sigma \)

(#instruction per UF ↗↗)

The politics of Green IT

A political objective Reduction of environmental footprint

Reduction from 4 to 10 according to authors

•
$$\frac{\text{production}}{\text{consumption}} = \text{efficiency } \nearrow$$

consumption ≥ ? or production ▷ ?

or even production ▷ ▷ ?

with rebound effect

Needs regulations

IT regulations today

- WEEE and Basel Convention
- RoHS

- Energy certifications
- Electromagnetic emissions

Not really IT specific...

...IT peripheral!

...IT as machines!

WEEE

- Waste of Electric and Electronic Equipment
- European directive 2003...
- ...implemented by member states
- Producer Responsibility Principle
- Recycle at least 85% of WEEE by 2016
- Reverse logistics

RoHS

- Restriction of Hazardous Substances
- European directive 2003
- Declaration of conformity
- Ban of 10 hazardous substances
 - lead (Pb), mercury (Hg), cadmium (Cd),
 brominated products, ...
 - batteries under Battery Directive 2006
 - many exemptions: ex. solar cells...
- IT: soldering and flame retardant

Electromagnetic emissions

Safe to work with!

- Ozone emission
- Electric hazard

• • •

Grenelle II - RSE

- Sustainable development at the company scale
- ISO 26000

Basel Convention

- Control of Transboundary Movements of Hazardous Wastes and Their Disposal
- International Treaty 1989-1992
- Basel Ban Amendment 1995
 - EU adheres
- WEEEs leak through as "commodities"
- Basel Action Network
 - e-Stewards initiative

Energy certifications

80 plus: efficiency in power supply 2006

- > 80 % energy efficiency
- do not say 90 plus! ...say 80 plus Platinum!
- does not cope with standby power
- Energy Star 1992
 - voluntary labeling program
 - includes 80 plus 2007

Regulations in real life

- Fishery management in watts
- WEEE directive
 - < 1000 Volt (AC) or 1500 Volt (DC)</p>
 - large equipment > 50 cm
 - screen area > 100 cm²
 - collection rate in 2016 > 45 %
- Displacement of engines > 49,9 cm³
- RoHS bans lead solder

Simplistic, arbitrary, ahead on technology

In summary

 IT systems considered like electric kettles a complex lump of complex materials

No consideration for the IT behaviour of IT systems

Imagine IT specific Green regulations

- Measure and display Green IT indicators
- Constrain IT equipment into categories
- Constrain software

Green IT indicators

- Display energy efficiency
 - benchmarked
 - or online

 reuse the bar system of wireless communication systems

Display LCA results

Constrain IT systems into power categories

- Form power categories
 - e.g. personal computer < 10 W</p>

arbitrary, simplistic and ahead of technology

Stress on innovative design

Power constrained projects

USB objects: 2,5 W

DOE's Exascale initiative : 20 MW

All autonomous embedded IT systems

Constrain software into size categories

Battle against software bloat

 A software and all its versions should belong to the same category

Too easy to fiddle with size metrics?

- Seems a poor metric because of compression
- Not so poor!
 - nloc metrics (infamous but used in real life)
 - Kolmogorov complexity (respected) well approximated by compression

Distribute compressed execute expanded

- Bennett logical depth
 - time consumption of the shortest algorithm

 A simplistic constraint with a formal meaning!

Tools exist for agressive size control

- Compilation, JIT
- Optimization
- Partial evaluation
- E.g. Google Web Toolkit

agressive
Java → JavaScript
translation

A real life example

- FCC (Federal Communications Commission) bans wifi routers open to 3rd party programs
- Linksys explains why its routers can remain open the RF data are protected and not subject to modification by 3rd party firmware
- Not yet a Green IT example,
 but still a IT-as-a-system regulation example

Brute force is not enough

- Need planning
- Need software LCA and green design patterns
- Need also internet/web LCA
- Transient systems
- Self-referencing systems
 - bootstrapped, but imagine ironworks without iron

Conclusion

- Regulations are required to reap the benefits of technical improvements
- Regulations may also stimulate technical innovation
- Public regulations are often simplistic, arbitrary and ahead of state-of-the-art
- Need software LCA and green patterns
- It is our job too!

Warning (1)

- In the past IT people have often objected regulations on the ground of being so different
 - immaterial information
 - virtual worlds, avatars,...
 - free clones, free copies...
 - Turing completeness, Universal Turing Machine,data = program...
 - Gödel, incompleteness, non-decidability...

Warning (2)

- We know now that it is an illusion
 - IT is made of real materials
 - IT lives on real energy

Green IT is a kind of rematerialization

- IT must also model real-life constraints
 - Bitcoin / Blockchain

