
Energy Efficiency in HPC
Resource Management and Scheduling

aspects

Yiannis Georgiou
Architect R&D

Ecole E3-RSD
26-05-2016

Introduction

▶High Performance Computing Systems run on large
amounts of power

▶Faster supercomputer in the world: Tianhe-2 in National

University of Defense Technology, China

– Performance:

33.86 PF/s Linpack (55 PF/s Peak)

– Power consumption:
17.8 MW (plus 24 MW cooling)

– Electricity cost

(~ 45k€ per day)

Sources: http://top500.org, http://www.scmp.com/news/china/article/1543226/

chinas-world-beating-supercomputer-fails-impress-some-potential-clients

Introduction

▶Half of the cost of a Petascale system comes from
energy consumption, and today, it costs about 1
million dollars a year to run a 1 MW system.

▶This means that the electricity bill is roughly equal to
the hardware cost of such platforms.

▶Cost not the only problem. Heat generation because of
density and energy consumption is difficult to
disseminate

3

Introduction

4

Buddy Bland, Present and Future Leadership Computers at OLCF, June 2015

Exascale

Today

[1] J. Dongarra et al., “The international exascale software project roadmap,” in
International Journal of High Performance Computing Applications, 2011.

▶The energy consumption is the most important
obstruction for building exascale machines [1]

Introduction

▶Energy efficiency major requirement in all levels of
hardware and software design

▶Ultimate goal: a maximum throughput within a given
energy budget.

▶Additional constraints :

– maximum power capping or constant power
consumption with only small perturbation.
• If those constraints are met, a power supplier can often provide a

significantly lower price, thus increasing the efficiency in terms of
TCO.

5

State of the art

▶There are 2 main approaches for energy efficiency in
HPC :

– Static power management which deals with
designing hardware operating on efficient energy
levels

– Dynamic power management in which the
software dynamically adapts its consumption based
on the usage of the resources.

6

Yiannis Georgiou, David Glesser, Krzysztof Rzadca, Denis Trystram
A Scheduler-Level Incentive Mechanism for Energy Eciency in HPC
(In proceedings of CCGRID 2015)

• System Software:

• Operating System, Runtime

• System, Resource Management,

• I/O System, Interfacing to External

• Environments

High Performance Computing Systems

Resource and Job Management System

•The goal of a Resource and Job Management System (RJMS) is

to satisfy users' demands for computation and assign resources

to user jobs with an efficient manner.

Direct and constant knowledge

of resources and application needs

RJMS Importance

Strategic Position, responsibility

for the overall system performance

Resource and Job Management System Layers

This assignement involves three principal abstraction layers:

•Job Management: declaration of a job and demand of resources

and job characteristics,

•Scheduling: matching of the jobs upon the resources,

•Resource Management : launching and placement of job instances

upon the computation resources along with the job’s control of execution

Objectives

▶Deal with energy efficiency in HPC from the RJMS side

– Power and Energy measurement system

– Allow the user to control the energy efficiency of
his/her executions

– Deal with power and energy as dynamic resources
and provide internal mechanisms to adapt the
scheduling

▶Studies with simulations and emulations along with
implementations upon a widely known open-source
Resource and Job Management System: SLURM

10

SLURM scalable and flexible RJMS

• Scalability: Designed to operate in a heterogeneous cluster
with up to tens of millions of processors.

• Performance: Can accept 1,000 job submissions per
second and fully execute 500 simple jobs per second
(depending upon hardware and system configuration).

• Free and Open Source: Its source code is freely available
under the GNU General Public License.

• Portability: Written in C with a GNU autoconf configuration
engine. While initially written for Linux, Slurm has been
ported to a diverse assortment of systems.

• Power Management: Job can specify their desired CPU
frequency and power use by job is recorded. Idle resources
can be powered down until needed.

• Fault Tolerant: It is highly tolerant of system failures,
including failure of the node executing its control functions.

• Flexibility: A plugin mechanism exists to support various
interconnects, authentication mechanisms, schedulers, etc.

https://github.com/SchedMD/slurm

http://www.gnu.org/licenses/gpl.html

SLURM History and Facts

 Initially developed in LLNL since 2003, passed to SchedMD

in 2011

 Multiple enterprises and research centers have been

contributing to the project (LANL, CEA, HP, BULL, BSC,

CRAY etc)

 Large international community, active mailing lists (support

by main developers)

 Contributions (various external software and standards

are integrated upon SLURM)

 As of the June 2015 Top500 supercomputer list, SLURM is

being used on six of the ten most powerful computers in

the world including the no1 system, Tianhe-2 with

3,120,000 computing cores.

BULL and SLURM

• BULL initially started to work with SLURM in 2005

• About 6 SLURM-dedicated engineers since 2013

–Research upon the field of Resource Management and Job

Scheduling (National/European financed projects, PhDs) and

definition of RoadMap

–Development of new SLURM features: all code dropped in the

open-source

–Support upon clusters : Training, Configuration, Bug correction,

Feature Requests, etc

• Integrated as the default RJMS into the BULL- HPC software

stack since 2006

• Close development collaboration with SchedMD and CEA

• Organaziation of Slurm User Group (SUG) Conference (User,

Admin Tutorials + Technical presentation for developpers)

http://www.schedmd.com/slurmdocs/publications.html

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control of power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

14

15

15

Power/Energy

Monitoring and Control

extreme computing by Bull

Power and Energy Management

16

Issues that we wanted to deal with:
Attribute power and energy data to HPC components
Calculate the energy consumption of jobs in the system
Extract power consumption time series of jobs
Control the Power and Energy usage of jobs and workloads

Power and Energy Measurement System

17

Power and Energy monitoring per node
Energy accounting per step/job
Power profiling per step/job
CPU Frequency Selection per step/job

How this takes place :
In-band collection of energy/power data (IPMI / RAPL plugins)
Out-of-band collection of energy/power data (RRD plugin)
Power data job profiling (HDF5 time-series files)
Parameter for CPU frequency selection on submission commands

Power and Energy Measurement System

18

Power and Energy monitoring per node
Energy accounting per step/job
Power profiling per step/job
CPU Frequency Selection per step/job

How this takes place :
In-band collection of energy/power data (IPMI / RAPL plugins)
Out-of-band collection of energy/power data (RRD plugin)
Power data job profiling (HDF5 time-series files)
SLURM Internal power-to-energy and energy-to-power calculations

Overhead: In-band Collection

Precision: measurements and internal calculations

Scalability: Out-of band Collection

Energy accounting per job with Slurm

▶ Total amount of energy consumption
per job is stored in Slurm accounting
database

▶ Data can be displayed in Graphite

19

Power and Energy Measurement System

20

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette and Matthieu Hautreux

Energy Accounting and Control with SLURM Resource and Job Management System

(In proceedings of ICDCN 2014)

[root@cuzco108 bin]# $ scontrol show n=mo38 | grep ConsumedJoules

CurrentWatts=105 LowestJoules=105 ConsumedJoules=17877

[root@cuzco108 bin]# sacct -o

"JobID%5,JobName,AllocCPUS,NNodes%3,NodeList%22,State,Start,End,Elapse

d,ConsumedEnergy%9"

JobID JobName AllocCPUS NNodes NodeList State

Start End Elapsed ConsumedEnergy

----- ---------- ---------- --- ---------------------- ---------- ----

--------------- ------------------- ---------- ---------

127 cg.D.32 32 4 cuzco[109,111-113] COMPLETED

2013-09-12T23:12:51 2013-09-12T23:22:03 00:09:12 490.60KJ

[root@cuzco108 bin]# cat extract_127.csv

Job,Step,Node,Series,Date_Time,Elapsed_Time,Power

13,0,orion-1,Energy,2013-07-25 03:39:03,0,126

13,0,orion-1,Energy,2013-07-25 03:39:04,1,126

13,0,orion-1,Energy,2013-07-25 03:39:05,2,126

13,0,orion-1,Energy,2013-07-25 03:39:06,3,140

In-band collection of power/energy data with IPMI

 IPMI is a message-based, hardware-level interface
specification (may operate in-band or out-of-band)

 Communication with the Baseboard Management
Controller BMC

 SLURM support is based on the FreeIPMI (opensource)

 Data collected in Watts

 SLURM individual polling frequency (>=1sec)

 direct usage for power profiling

 internal SLURM calculations for energy reporting per
job

In-band collection of power/energy data with RAPL

 RAPL (Running Average Power Limit) interface
implemented mainly for power-cap on socket level

 Interfaces can estimate current energy usage based
on a software model

 The data collected from RAPL is energy consumption
in Joules

 SLURM individual polling frequency (>=1sec)

 direct usage for energy reporting per job

 but internal SLURM calculations for power
reporting

Power Profiling with HDF5

 Job profiling to periodically capture the task’s usage
of various resources like CPU, Memory, Lustre,
Infiniband and Power per node

 Resource Independent polling frequency configuration

 Based on hdf5 file format (opensource)

 Profiling per node (one hdf5 file per job on each
node)

 Aggregation on one hdf5 file per job (after job
termination)

 Slurm built-in tools for extraction of hdf5 profiling
data

Energy Accounting and Power Profiling
Architecture

Power and Energy Measurement System

25

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette and Matthieu Hautreux

Energy Accounting and Control with SLURM Resource and Job Management System

(In proceedings of ICDCN 2014)

Power and Energy Measurement System

26

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette and Matthieu Hautreux

Energy Accounting and Control with SLURM Resource and Job Management System

(In proceedings of ICDCN 2014)

Power and Energy Measurement System
CPU Overhead for IN-Band techniques

27

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette and Matthieu Hautreux

Energy Accounting and Control with SLURM Resource and Job Management System

(In proceedings of ICDCN 2014)

Power and Energy Measurement System
Memory Overhead for IN-Band techniques

28

Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette and Matthieu Hautreux

Energy Accounting and Control with SLURM Resource and Job Management System

(In proceedings of ICDCN 2014)

Optimizations of
Power and Energy Measurement System

29

Daniel Hackenberg, Thomas Ilsche, Joseph Schuchart, Robert Sch ̈ ne, Wolfgang E. Nagel, Marc Simon, Yiannis

Georgiou

HDEEM: High Definition Energy Efficiency Monitoring

In proceedings E2SC-2014

Based on TUD/BULL - BMC firmware optimizations
sampling to 4Hz
No overhead for accounting

FPGA for power measurement

▶ On bullx B7xx and Bull Sequana platform a
power measurement FPGA is integrated in
each compute node

▶ Provides a sampling up to:

– 1000 sample per second for global power
including sockets, DRAM, SSD and on-board

– 100 sample per second for voltage regulators
(VR) – 6 VR: one per socket + 4 for DRAM (one
/ 2 lanes)

▶ High accuracy with 2-3% of uncertainty
after calibration

– 2% for blades

– 5% for VR

▶ Time stamped measurements

30

Hardware implementation
bullx B7xx

31

with FPGA power measurement

▶ Collaborative project with Technical University of Dresden (ZIH)

▶ C API ease to use to gather power data

– Start / Stop / Print / Check / Clear

▶ Goal is to be able to integrate power measurement in application performance
traces tool(s) and also in resource manager accounting and profiling without
performance overhead

– Measurement and
buffering is done
on BMC
side for several
hours

▶ Per function analysis

– Real test-bed on
BigDFT (700 functions)
+/- 6.5W on 400W

32

HDEEM_VERSION, 2.1.5
BMC address, localhost
==== HDEMM status ==== ,
Last polling start time , 2015-10-02 15:22:30.268162727
Started by , GPIO
…
Total blade values , 403974
Pending blade in BMC , 403974
Total VR values , 40397
Pending VR in BMC , 40397
Freq blade values (#Measure/s) , 1000
Freq vr values (#Measure/s) , 100

Blade

1, 92.000
2, 92.375
3, 92.125
4, 92.000
5, 92.000
6, 96.250
7, 101.625
8, 101.000
9, 100.875

10, 101.125

Measurement
from node

Starting time

Number of values

Power and Energy through SLURM IPMI-RAW
plugin

33

▶ High Definition energy efficiency monitoring based on new FPGA architecture
supported through ipmi-raw

– Improved accuracy for both power profiling per components (100Hz) and
nodes (1000Hz)

– Improved precision for energy consumption per job based on nodes
(1000Hz) measurements

– Decrease overhead on the application (CPU and Memory) since the
collection is done internally within the FPGA

▶ To be released in upcoming slurm version

Out-of-band collection of power/energy data

 External Sensors Plugin to allow out-of-band monitoring of
cluster sensors

 Possibility to Capture energy usage and temperature of
various components (nodes, switches, rack-doors, etc)

 Framework generic but initial support for RRD

 Plugin to be used with real wattmeters or out-of-band IPMI
capturing

 Power data captured used for per node power monitoring
(scontrol show node) and per job energy accounting (Slurm
DB)

 direct usage for energy reporting per job

 but internal SLURM calculations for power

 Currently used in MontBlanc project with ARM

Accounting – Profiling

Support of multiple energy sensors

Support for one sensor per node (until 14.11)

$ ipmi-sensors

62 | Power | Current | 175.80 | W | 'OK'

Support for multiple sensors per node (from 15.08)

$ipmi-sensors

85 | CPU0 Pwr | Power Supply | 10.00 | W | 'OK'

86 | CPU1 Pwr | Power Supply | 6.00 | W | 'OK'

87 | CPU0 DIM01 Pwr | Power Supply | 2.00 | W | 'OK'

88 | CPU0 DIM23 Pwr | Power Supply | 0.00 | W | 'OK'

89 | CPU1 DIM01 Pwr | Power Supply | 1.00 | W | 'OK'

90 | CPU1 DIM23 Pwr | Power Supply | 0.00 | W | 'OK'

91 | Blade Pwr | Power Supply | 112.00 | W | 'OK'

User-level control of power and energy through
CPU Frequency setting parameter

36

$# srun --cpu-freq=2700000 --resv-ports -N2 -n64 ./cg.C.64&

$# sacct -j 58 -format=jobid,elapsed,aveCPUFreq,consumedenergy

JobID Elapsed AveCPUFreq ConsumedEnergy

------------ ---------- ---------- --------------

66 00:00:49 2640340 19668

Set the CPU frequency

Real CPU freq.

Job energy consumption

▶ Job “--cpu-freq” option now supports minimum frequency (in addition to
maximum frequency and governor) and supported for salloc and sbatch (for
power adaptive scheduling)

▶ --cpu-freq =<p1[-p2[:p3]]>
– p1 is current options or minimum frequency
– optional p2 is maximum
– optional p3 is scaling governor

▶ New configuration parameter “CpuFreqGovernors” identifies allowed
governors

User-level: Find the good configuration…

▶ Using Slurm Energy Accounting to find the right trade off

▶ Specifying the optimal CPU using srun parameter

37

Ongoing Work: Global power measurement

▶ Data collection is, by default, done
out-of-band to avoid any system noise
– IPMI, SNMP

▶ Collectd is the major component for
data acquisition
– Scalable by aggregating data per island

– Consolidation per island

– Modified collectd to synchronize data
acquisition (using NTP and epoch reference)

– Customizable rate
(default 20 sec, up to 1sec)

▶ Covers nodes (compute and service)
but also others equipment in the
system

▶ On-site tuning to adapt configuration

38

39

39

Power adaptive and Energy
aware scheduling

extreme computing by Bull

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control of power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

40

Energy Fairsharing

▶Fairsharing is a common scheduling prioritization technique
▶Exists in most schedulers, based on past CPU-time usage
▶Our goal is to do it for past energy usage
▶Provide incentives to users to be more energy efficient

Based upon the energy accounting mechanisms
Accumulate past jobs energy consumption and align that with

the shares of each account
Implemented as a new multi-factor plugin parameter in

SLURM

▶Energy efficient users will be favored with lower stretch and
waiting times in the scheduling queue

41

Energy Fairsharing

42
Yiannis Georgiou, David Glesser, Krzysztof Rzadca, Denis Trystram

A Scheduler-Level Incentive Mechanism for Energy Eciency in HPC

(In proceedings of CCGRID 2015)

Performance vs. energy tradeoffs for Linpack applications as

calibrated for different sizes and execution times running on an

180-cores cluster at different frequencies.

Energy Fairsharing

43
Yiannis Georgiou, David Glesser, Krzysztof Rzadca, Denis Trystram

A Scheduler-Level Incentive Mechanism for Energy Eciency in HPC

(In proceedings of CCGRID 2015)

Cumulated Distribution Function for Stretch with EnergyFairShare policy

running a submission burst of 60 similar jobs with Linpack executions by 1

energy-efficient and 2 normal users (ONdemand and 2.3GHz)

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control framework for power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

44

Layouts Framework

Supercomputers become more complex structures

Resources have a lot of characteristics that are not currently

taken into account by the RJMS:

Power Consumption per Component, Electrical

Connections, Communications roles

Infrastructure characteristics may impact the way resources

should be used or provided

Available power, cooling capacity, ...

Those characteristics may provide valuable information that

may be used to optimize automatic decisions:

Scheduling, Energy Efficiency, Scalability

Motivations

Motivations

One Cluster

with multiple views

of the same type of resources

Network topology view

Power Consumption view

Consumable Resources view

Layouts Framework

Motivations
Supercomputers size and complexity are increasing
Acquisition and running costs can/must be optimized
Multiple views of supercomputers can be leveraged

Goals

Add a generic/extensible way to describe views of
supercomputers
Propose views details to the resource manager for

Advanced management
Advanced scheduling

Ease views information update to take into account system
dynamics

Layouts Framework

Entities
Each component of a supercomputer can be an entity

A single pool of entities to manage all the components
Each entities can have a set of properties (Key-Value

entries)
Associated to the different views

Layouts
Layouts correspond to the managed views

Example: racking view, power provisioning view, ..
Provide a relational logic to link managed components
Provide a set of properties to enhance components

information

Slurm Layouts Framework

Features added in slurm-15.08

Read-Only Key/Value entries (Key-spec)
Provide a way to ask for immutable properties

Forbidding any update using “scontrol update layouts
...”

Key/Value inheritance model
Define Key/Value inheritance property over a layout

relation model
Tree based only right now
Examples of inheritance properties (mutually exclusive)

CHILDREN_SUM / CHILDREN_{MIN,MAX,AVG} /
CHILDREN_COUNT
PARENTS_SUM / PARENTS_{MIN,MAX,AVG} /

PARENTS_FSHARE

Slurm Layouts Framework
Features added in slurm-15.08

Key/Value Automatic Updates
Leverage Key/Value inheritance model to provide global

layout consistency
Automatically updates of the entity's neighborhood
Ensure consistency of the internal representation after
any modification

Selected logic: 2 consecutive stages
Start with Top-Down Parents Inheritances
Followed by Bottom-Up Children Inheritances

Optional
Layout plugins have to ask for “autoupdate” support for
that
Can have performance penalties for very large
layouts

Need more evaluations / improvements

Slurm Layouts Framework
Example of Automatic Updateeatures added in slurm-

15.08

Slurm Layouts Framework
Example of Automatic Updateeatures added in slurm-

15.08

Slurm Layouts Framework
Example of Automatic Updateeatures added in slurm-

15.08

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control framework for power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

58

Power adaptive scheduling

59

▶Power adaptive scheduling within SLURM is a new
feature appearing in 15.08

Initial algorithms and prototype made by CEA in
2013

A second prototype (extended version of the first)
has been studied, experimented and published in
[Georgiou et al. HPPAC-2015] by BULL + LIG

▶Final implementation (BULL) based upon the
layouts framework and its API functions (CEA)

Yiannis Georgiou, David Glesser, Denis Trystram

Adaptive Resource and Job Management for limited power consumption

In proceedings of IPDPS-HPPAC 2015

Power adaptive scheduling

60

▶The implementation appeared in Slurm v15.08 has the
following characteristics:
▶Based upon layouts framework

-for internal represantation of resources power
-Only logical/static represantation of power
-Fine granularity down to cores

▶Power Reductions take place through following
techniques
▶coordinated by the scheduler:

–Letting Idle nodes
–Powering-off unused nodes (using default SLURM mecanism)
–Running nodes in lower CPU Frequencies (respecting –-cpu-freq
allowed frequencies)

Set/Modify/View Powercap Value

61

▶Initially with parameter in slurm.conf

[root@nd25 slurm]#cat /etc/slurm.conf |grep Power

PowerParameters=cap_watts=INFINITE

▶Dynamically with scontrol update

[root@nd25 slurm]#scontrol update powercap=1400000

▶In advance with watts reservation (scontrol create
res) [root@nd25 slurm]#scontrol create res FLAG=ANY_NODES starttime=now+11minutes

duration=16 Watts=532224 Users=root

▶View with scontrol show

[root@nd25 slurm]#scontrol show powercap

MinWatts=564480 CurrentWatts=809934 PowerCap=INFINITE PowerFloor=0

PowerChangeRate=0AdjustedMaxWatts=1774080 MaxWatts=1774080

Power adaptive scheduling
– algorithm extended version -

62

▶Reductions through DVFS, idle and shut-down nodes (if
power-save mode activated)
▶Considering core level power consumption

Layouts=power/cpufreq

Power adaptive scheduling
– algorithm extended version -

▶Logic within the Powercapping Check

▶Calculate what power consumption the cluster would
have if the job was executed

▶If higher than the allowed power budget, check if DVFS
is allowed for the job (usage of –-cpu-freq parameter
with MIN and MAX)

–If yes then calculate what power consumption the cluster would have
if the job was executed with its different allowed CPU-Frequencies

–Try with the optimal CPU-Frequency which is the one that would allow
all the idle resources to become allocated

▶If neither the optimal nor the MIN allowed CPU-
Frequency for the job results in lower power
consumption than the powercap then job pending else
running

Power adaptive scheduling
– algorithm extended version -

▶Architecture of the Powercapping Check
▶Based upon the different nodes bitmaps states

▶Using Layouts for collecting and setting nodes and
cores power consumption (both get and set functions)

▶Each CPU Frequency is represented/considered to have
its own power consumption (based on measures or
hardware provider specifications)

[root@nd25 slurm]#cat /etc/layouts.d/power.conf

Entity=Cluster Type=Center CurrentSumPower=0 IdleSumWatts=0 MaxSumWatts=0

Enclosed=virtual[0-5039]

Entity=virtualcore[0-80639] Type=Core CurrentCorePower=0 IdleCoreWatts=7

MaxCoreWatts=22 CurrentCoreFreq=0 Cpufreq1Watts=12 Cpufreq2Watts=13

Cpufreq3Watts=15 Cpufreq4Watts=16 Cpufreq5Watts=17 Cpufreq6Watts=18

Cpufreq7Watts=20

Entity=virtual0 Type=Node CurrentPower=0 IdleWatts=0 MaxWatts=0 DownWatts=14

PowerSaveWatts=14 CoresCount=0 LastCore=15 Enclosed=virtualcore[0-15]

Cpufreq1=1200000 Cpufreq2=1400000 Cpufreq3=1600000 Cpufreq4=1800000

Cpufreq5=2000000 Cpufreq6=2200000 Cpufreq7=2400000 NumFreqChoices=7

Entity=virtual1 Type=...

Power adaptive scheduling
– algorithm extended version – Configuration

65

[root@nd25 slurm]#cat /etc/slurm.conf |grep power

Layouts=power/cpufreq

▶Set parameter within slurm.conf

▶Set new /etc/layouts.d/power.conf file

66

[root@nd25 slurm]#vi src/layouts/power/cpufreq.c

const layouts_keyspec_t keyspec[] = {

/* base keys */

{"CurrentCorePower", L_T_UINT32},

{"Cpufreq1", L_T_UINT32},

{"Cpufreq1Watts", L_T_UINT32},

/* parents aggregated keys */

{"CurrentSumPower", L_T_UINT32,

KEYSPEC_UPDATE_CHILDREN_SUM, "CurrentPower"},

{"CurrentPower", L_T_UINT32,

KEYSPEC_UPDATE_CHILDREN_SUM, "CurrentCorePower"},

{NULL}

};

const char* etypes[] = {

"Center",

"Node",

"Core",

NULL

};

Layouts Power code structure (truncated)
- src/layouts/power/cpufreq.c -

67

[root@nd25 slurm]#vi src/common/job_resources.c

…

extern int adapt_layouts(job_resources_t *job_resrcs_ptr,...

...

layouts_entity_get_mkv("power", node_name,

"CoresCount,LastCore", data,

(sizeof(uint32_t)*2),L_T_UINT32);

for (i = 0; i < core_cnt; i++) {

/*core_num=LastCore+1-CoresCount*/

core_num = data[1] + 1 - data[0] + i;

sprintf(ename, "virtualcore%u", core_num);

layouts_entity_get_mkv("power", ename,

"CurrentCorePower,IdleCoreWatts",

vals,

(sizeof(uint32_t)*2) ,L_T_UINT32);

if (new_value) {

if (vals[0] == 0) {

layouts_entity_set_kv(

"power",

ename,

"CurrentCorePower",

&vals[1],

L_T_UINT32);

Layouts Power code structure (truncated)
- src/layouts/power/default.c -

« get_mkv »

API functions

examples

« set_kv »

API functions

examples

Experiments Testbed

68

▶Consist of executing the Light-ESP synthetic workload
composed of 230 jobs of 8 different job profiles (sizes,
execution times)

▶Deploy an emulated cluster with 5040 emulated nodes (
16 cores / node) using 18 physical nodes

Upon an bullx B510 cluster with Intel Sandybridge (16cores/node,
64GB)
Using “multiple-slurmd” emulation technique
Layouts=power/cpufreq configured

▶Experiments have as goal to:
Validate that powercapping works correctly
Compare the scaling of the powercapping logic, layouts

framework and API functions

69

Power adaptive scheduling validation
– powercap set on-the-fly with scontrol update-

70

Power adaptive scheduling validation
– powercap set in advance with reservation -

71

Power adaptive scheduling – scaling validation
– No powercap set -

72

Power adaptive scheduling scaling validation
– With powercap INFINITE -

Discussion

▶Power adaptive scheduling logic works fine but we
can see that optimizations are needed in the layouts
usage to reach the performance of bitmaps

This is due to the fact that we still check the power of each
node individually, this should be done globally with consistent
synchronization of layouts
The synchronization part of the layouts pull and push

functions update the whole key/values store, it should update
only the affected neighbours
Need of new layouts API functions to get/set multiple entities

73

Power adaptive scheduling

74
Yiannis Georgiou, David Glesser, Denis Trystram

Adaptive Resource and Job Management for limited power consumption

In proceedings of IPDPS-HPPAC 2015

Power adaptive scheduling

75
Yiannis Georgiou, David Glesser, Denis Trystram

Adaptive Resource and Job Management for limited power consumption

In proceedings of IPDPS-HPPAC 2015

Powercap of 60% with mainly big

jobs and SHUT policy

Powercap of 40% with mainly small

jobs and DVFS policy

Ongoing and Future Works

▶Further optimizations in the logic to improve scalability
▶Make consistent the internal state of layouts (scontrol show
layouts)
▶Create new layouts API functions mainly to cover the previous
points

Multi-entity get/set
Intelligent pull/push to modify only affected neighbours

▶Provide ways to represent the real physical information of power
consumption from the sensors to the layouts

Integration with real sensors data as used within AcctGatherEnergy
plugin (IPMI, RAPL)

Add values such as -Latest20AverageWatts- or -
Latest100AverageWatts- to capture time factor of an already used
node

▶Study and extent to dynamic DVFS support
Change CPU Frequency on the fly during job execution
This may help when both entering or coming out of powercap period

76

77

77

Ongoing Works and Road to
Exascale

extreme computing by Bull

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control of power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

Dynamic Runtime Energy Optimizations

79

▶Goal: to reduce the energy consumption of a single application during

execution.

1. Based on initial application profiling which reveal the different phases of

the application (compute, communication, IO, etc)

2. Enable dynamic runtime energy optimizations by triggering adapted

actions based on the application phase (i.e. CPU, GPU, BXI reconfigurations

for lower power)

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control of power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

Towards Energy Budget Control

81

▶Background: Scheduling with powercap (introduced in slurm 15.08) deals with maximum power

▶avoid fines from electricity provider

▶no intelligence for power usage throughout time (= energy)

▶Proposed optimization: Scheduling with energycap enables to better align the energetic

budget to the variation of electricity prices (schedule more jobs when low price)

▶EnergyCap Scheduling

▶Schedule jobs under particular energetic budgets for variable time durations.

▶Extension of powercapping with the difference that we are interested to adapt the power

consumption in a way that the final energy consumption of the particular time duration

remains below the allowed energetic budget.

▶The actual energy consumption reductions take place through coordinated techniques such

as:

▶Dynamic CPU - Frequency scaling

▶Hardware power-capping (RAPL, Sequana-blade)

▶Keeping nodes idle

▶Shut-down nodes

Towards Energy Budget Control

82

Overview

▶Power/Energy Monitoring and Control
– Measurement System

– Energy Accounting

– Power Profiling

– User level control of power and energy

▶Power adaptive and Energy aware scheduling
– User Incentives for energy aware scheduling

– System-level control of power and energy

– Power adaptive scheduling

▶Ongoing Works and Road to Exascale
– Dynamic Runtime Energy Optimizations

– Towards energy budget control

– Energy Efficiency and road to exascale

83

CURIE - 2011
1st PRACE Petascale supercomputer

Intel E5 “Early Bird”

150 GB/s Lustre

2 PFlops peak

OCCIGEN 2015
TIER0 Supercomputer, CINES

DLC technology

2.1 PFlops peak

250 + 300GB/s – Lustre & DMF

TAURUS 2013-2014
1st BULL PetaFlops Supercomputer in Germany

1 PFlops peak

Lustre

DKRZ 2014-2016
Climate research

DLC technology

3 PFlops

45 PB @ 480 GB/s

Lustre + HPSS

CARTESIUS 2013-2014
1st Bull Petascale Supercomputer in Netherland

DLC technology

1.3 PFlops

8PB @ 220 GB/s - Lustre

HELIOS 2011-2014
ITER Community

1.7PFlops peak

X86 + PHI

+100GB/s – Lustre

BEAUFIX PROLIX 2013-2014-2015
1st Intel E5 v3 supercomputer in production ww

DLC technology

1 PFlops peak

Extension to 5 PFlops in 2016

SANTOS DUMONT 2015
Largest supercomputer in Latin America

DLC Technology

1 PFlops peak

Mobull

BULL current largest HPC supercomputers

• Open and modular platform designed for the long-term
 To integrate current and future technologies

 Multiple compute nodes: Xeon-EP, Xeon Phi, Nvidia

GPUs, other architectures…

• Scales up to tens of thousands

of nodes
 Large building blocks to facilitate scaling

 Large systems with DLC: 250-64k nodes

• Embedding the fastest

interconnects
 Multiple Interconnects: BXI, InfiniBand EDR-HDR

 Optimized interconnect topology for large basic

cell / DLC (288 nodes)

 Fully non-blocking within Cell

• Ultra-energy efficient
 Enhanced DLC – up to 40°C for inlet water and ~100% DLC

Bull sequana
the Bull exascale generation of supercomputer

MontBlanc project targets
pre-exascale systems for 2020

• BULL leading the MontBlanc project

• European approach towards energy efficient high performance

• To design a well-balanced architecture and to deliver the design
for an ARM based SoC or SoP (System on Package) capable of
providing pre-exascale performance

• To introduce new high-end ARM core and accelerators
implementations to efficiently support HPC applications.

• To develop the necessary software ecosystem for the future
SoC.

86

Considering energy efficiency
from code design to execution
for heterogeneous architectures

• Atos/Bull leading the Tango project (Transparent Heterogeneous
hardware Architecture deployment for eNergy Gain in Operation)

• Extension of currently available programming models and
resource and job management systems to support complex
heterogeneous architectures

• Code optimizer engine with the aim of optimizing code mapping.
to reduce power consumption by the application.

87

Karim Djemame, Django Armstrong, Richard E. Kavanagh, Jean-Christophe Deprez, Ana Juan

Ferrer, David Garcia Perez,Rosa M. Badia, Raúl Sirvent, Jorge Ejarque, Yiannis Georgiou:

TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in

Operation. CoRRabs/1603.01407 (2016)

• Power-awareness integrated in the whole
software development optimization and
execution process

Atos, the Atos logo, Atos Consulting, Atos Worldgrid, Worldline,
BlueKiwi, Canopy the Open Cloud Company, Yunano, Zero Email, Zero
Email Certified and The Zero Email Company are registered
trademarks of Atos. July 2014. © 2014 Atos. Confidential information
owned by Atos, to be used by the recipient only. This document, or
any part of it, may not be reproduced, copied, circulated and/or
distributed nor quoted without prior written approval from Atos.

Thanks

yiannis.georgiou@atos.net

