LIFE CYCLE
ASSESSMENT (LCA)
AND ICT: PRINCIPLES,
MAIN ISSUES AND
LIMITS

October 2th 2018

Carole CHARBUILLET

Carole.charbuillet@ensam.eu

Research school E3-RSD 2018 Dinard-France

WHAT ARE ICT?

ICT are everywhere...

Malmodin J., 2014, Life Cycle Assessment of ICT, Journal of Industrial Ecology.

>Question 1:

- -Led screens are less energy consuming than CRT.
- -It is better for the environment to change the old screen?

A- Yes

B- No

>A: if you consider only the use phase

>B: if you consider the life cycle stages

Fig. 7 Climate change potential of three monitors (Kg Co₂ Eq.)

(Bhakar 2015)

➤ Question 2: the localization of the manufacturing site doesn't matter?

A- Yes

B- No

>A: direct impact on environment

WHAT ARE THE ENVIRONMENTAL CHALLENGES OF ICT?

(Bahkar 2015)

>Question 3:

 The measure of CO2 emissions is sufficient to improve environmental performance of ICT

A: Yes

B: No

>Question 4:

- Energy is the major environmental challenge of ICT?

A: Yes

B: No

What are the environmental impacts of a connected watch?

WHAT ARE THE ENVIRONMENTAL CHALLENGES OF ICT?

What are the environmental impacts of a connected

Oil depletion

12:45

NOV 27

0 76

WEEE Very low recycling rate

Hard repair

Toxic pollutions

Low lifespan

> Potential benefits

Teleworking E-books Online purchase Dematerialization

Energy and resources savings

But it is not always the case

Necessity to develop a methodology in order to find the best compromise

LCA: A MULTI-STAGE AND MULTI-CRITERIA METHODOLOGY

The Life Cycle thinking includes all the following activities:

- Raw materials extraction
- Manufacturing
- Packaging
- Distribution
- Use
- Maintenance
- Reuse and recycling
- Landfill

All these stages need energy, non-renewables resources and generate environmental impacts.

LCA: A MULTI-STAGE METHODOLOGY

Product Life Cycle: Example of a smartphone

(ICT4S conference)

LCA: A MULTI-CRITERIA METHODOLOGY

Climate Change: Greenhouse emissions

Ozone depletion: all damages to the ozone layer

Human toxicity: emissions in air, water and ground of toxic substances for humans

Aquatic ecotoxicity: emissions in air, water and ground of toxic substances for aquatic fauna and flora

Eutrophication: decrease of the aquatic fauna and flora due to algae contamination (excess of nutrients)

Water consumption

Energy consumption

LCA: A MULTI-CRITERIA METHODOLOGY

Example: Environmental impacts of a Smartphone in France

LCA: A MULTI-STAGE AND MULTI-CRITERIA METHODOLOGY

> Avoiding transfer of environmental pollution

≻Global view of several impacts

Necessary to identify the most important environmental aspects

> Data quality

LCA results are goal and data dependent

STRATEGY ECO-DESIGN COMMUNICATION **MARKETING** Identification of Environmental Systems comparison the main Competitive positioning WHY DO LCA? impacts challenges assessment Ecolabelling NTERNA Objectives Product definition improvement Legislation Eco-innovation anticipation Optimization of industrial processes Lobbying Communication on Sustainable Standardisation environmental purchasing actions performances specifications Increase environmental awareness of customers ParisTech © Arts et Metiers

LCA METHODOLOGY:

A BIT OF HISTORY

 First « Resource and Environment Profile Analysis » realised by Coca-Cola (1969)

-'80s

First LCA public databases (BUWAL, Switzerland)

-'90s

First ISO standards

Development of LCA software

2000

Research on simplified LCAs

Today

• A scientific framework but improvements are needed.

LCA: DEFINITION AND PRINCIPLES

ACV (ISO 14040)

« Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle »

ISO standard ensures that a LCA is completed in a certain way.

STAGE 1: THE STUDIED SYSTEM

Cooling system of a datacenter in Sweden (Oliveira F., 2012)

STAGE 1: THE STUDIED SYSTEM

The Functional Unit

- >Quantification of the product function
- > Reference to calculate the inputs and outputs
- **≻**Necessary to compare products

Action verb+ performance level + operating conditions+lifespan

The Functional Unit

Use a standard monitor with a diagonal viewing area of 15 inches, working 240 days a year for 6 year in which five hour normal operation, two hour sleep mode and one hour standby mode

Dissipate a heat load of 5 kW/m2 maintaining a temperature no higher than 22°C to the inlet of electronics device during 20 years»

USB key? e-book? Online purchase...

System boundaries

- ➤ Definition of the elementary processes taken into account in the LCA
- ➤ Life cycle stages+processes+flow

Goal and scope definition Inventory Analysis Impact assessment

Life Cycle Inventory

>Quantification of the input and output flows

STAGE 2: LIFE CYCLE INVENTORY

STAGE 2: LIFE CYCLE INVENTORY

Resources

Material Chemical product Water Energy mix

Generated materials

Products
Waste
Substances in air,
ground and water

<u>Others</u>

Radiations Heat Noise

Inputs and outputs are calculated for one functional unit.

STAGE 2: LIFE CYCLE INVENTORY

The data

≻Primary data versus secondary data

Secondary data= generic data Average value for a product or process From databases or LCA reports

Reference:

- Data source
- Collection date
- Collection process

Importance of the data choice: desktop computer case study

STAGE 2: LIFE CYCLE INVENTORY

(Teehan, 2012)

2000

2005

2010

CLASSIFICATION

© Arts et Métiers

CHARACTERIZATION

Impact calculation model

- >A characterization factor
- >A characterization model
- >A list of contributive substances

$$IE_i = \sum_{S} FI_{S,i} \times m_S$$
 Characterization Factor

Characterization model

CHARACTERIZATION

Example: the climate change factor (greenhouse emissions)

$$CC = \sum_{i} GWP_{a,i} \times m_{i}$$

- -a= number of years (often 100 years)
- -i= the studied substance
- -m_i=quantity ot substance i emitted (kg)

GWP= Global Warming Potential (GIEC)

 Effect of the gases on infrared radiation absorption and their lifetime in the atmosphere

$$GWP_{i} = \int_{0}^{T} a_{i}c_{i}(t)dt$$

$$\int_{0}^{T} a_{CO_{2}}c_{CO_{2}}(t)dt$$

- a_i= radiation absorption due to a gas increasing
- c_i(t)=gas concentration remaining in the atmosphere
- T= number of years

CHARACTERIZATION

GWP

CHARACTERIZATION

LIMITS

- Many uncertainties (calculus, characterization models)
- A different laboratory for each stage and each impact category
- All substances are not taken into account because their characterization factor doesn't exist in the databases.

But: this is not synonymous of no impact of the substance

Objectives:

- Results analysis,
- Validate the assumptions of the stage 1
- Quality data assessment
- Define recommendations to improve the product

For the entire Life cycle

STAGE 4: INTERPRETATION LCA OF A SERVER

LCA OF A SERVER

© Arts et Métiers

SENSITIVITY ANALYSIS

Results reliability (sensitivity analysis, uncertainties...)

Variation of the parameters with poor data quality Comparative LCA with a more recent server

5- Conclusions and Recommendations

- ✓ Summary of the major contributions for each impact category
- ✓ Proposal of scenarios in order to reduce the impact sources
- ✓ Examples of recommendations:
 - Change the localization of the manufacturing site (energy mix impact)
 - Choice of low impact materials
 - Production optimization
 - End-of-life improvement

. . .

Server: Increase the components lifespan

LCA LIMITS

Methodological Limits

Only the environmental criteria are assessed.

Risk related to a lack of impartiality- Need to do a critical review.

FU variability: lifetime, system boundaries.

Data heterogeneity

LCA LIMITS

Sources of variability

>Their lifespan

LCA AND ICT
MAIN ISSUES

LCA AND ICT MAIN ISSUES

Other sources of variability

- >Systems boundaries: localization of the suppliers
- French energy mix more favorable for the use phase than the Chinese one (be careful about the others impacts of nuclear energy)
- The choice of the end-of-life scenario: often not considered.
- >The technological evolution
- > Planned obsolescence, rebound effect

ICT systems: major environmental challenges

CONCLUSION

LE GDS **ECOINFO**

Ecolofo LE NUMERIQUE... ET L'ENVIRONNEMENT?

L'UTILISATION: un "iceberg" énergétique

THANK YOU FOR YOUR ATTENTION!

October 2th 2018

Carole CHARBUILLET

Carole.charbuillet@ensam.eu

Research school E3-RSD 2018 Dinard-France

