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Cairn Team at a Glance

• Energy-Efficient Computing        
Architectures

• ~35 people, Rennes and Lannion campuses
• INRIA, Univ. Rennes 1, ENS Rennes
• Electrical Engineering & Computer Science 

• Domain-specific computing architectures
• Design tools and compilers
• Wireless, signal, image, security

Inria Rennes

Enssat Lannion
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Energy Efficiency Challenges

• Teraops/Watt?
– 10#$ op./s/W ≡ 1 pJ/op

– Several orders of magnitude from current processors 
and multicores

• From Sensors        to Clouds

§ 1 GOPS @ 1mW

§ IoT sensor nodes

§ 1 MOPS @ 100&W
§ Energy harvesting

Micro Mote

§ 1 TOPS @ 1W
§ Clouds, embedded systems

Intel CPU+FPGA

☁"
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Improving Energy Efficiency

• Technology?

– What can advanced technology nodes bring

• Accelerate

– Energy advantages of specialized hardware

• Approximate

– Playing with accuracy to reduce energy

• Manage the Power

– Dynamic Voltage/frequency (Over-)Scaling

– Energy Harvesting sensor nodes

☁"

☁"

☁"
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Key Questions

• A deep dive into processors… (I hope not too deep)
• Basics on transistors, logic gates, registers, memory
• Energy consump;on of processor core/uncore
• Computers are parallel
– Billions of transistors doing the job at the same ;me
– Are mul;core processors the solu;on?

• Specializing the computer
– Reconfigurable compu;ng

• Emerging paradigms
– Neuromorphic, approximate, stochas;c
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Outline

• Part I: From Transistors to Logic Gates
– Basic Element, Delay, Power Consump@on
– The Issue of Synchroniza@on

• Part II: Inside a Processor
– Von-Neumann Architecture, Instruc@on Set Architecture, 

Opera@ng Systems
– Mul@core Processors, Power and U@liza@on Walls

• Part III: Pushing the Accelerator!
– Hardware Accelerators
– Reconfigurable Compu@ng

• Part IV: Emerging Compu@ng Paradigms
– Neuromorphic Compu@ng 
– Approximate Compu@ng
– Chips are going 3D
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Integrated Circuit Design

• Chips, logic gates and transistors

Intel’s Xeon Chip

process(clk)
begin
if (clk�event and clk=
1�) then
A <= B + C;
S <= A * D;

end if;
end process;

#pragma hls_design top 
void my_design (int *a, int *o) { 

static int i,j;
for�i����i<=n-1; i���
for�j����j<=n-1; j++�
a�i	�j	���(a[i-1][j	�a�i	�j	�a�i][j-1])/3.0;

}

A B

B

A

S
Ci
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Part I: From Transistors to Logic Gates

• The Fundamental Element: MOSFET Transistor 
• Design of CMOS Cells: Combinatorial Logic
• Memory Cells
• Delay and Power Consumption
• Synchronous Design



9

Fundamental Building Block: 
MOSFET Transistor 

Intel’s Xeon Chip

GNow several billions or transistors

L: length

W: width

tox

n+ n+

Cross section

Gate oxide

L

Top view

Polysilicon gate

G

S

D

S D

MOSFET: Metal Oxide Silicium Field Effect 10

The Basic Element: Transistor

• Transistor 
as a switch

• Vgs > Vt: NMOS on
– Resistance RDS

• Vgs < Vt: NMOS off
– Leakage Ioff

Ids

Vgs

Vt: threshold voltage

Ioff

• Gate: capacitance CG

G

S

D

CG

• Switch: resistance RDS

SD

SD
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Transistors Nowadays 

• Intel FinFET: transistors go 3D

• Fully Depleted SOI1

– Low-power

Planar FDSOI Transistor Advantages 

February 2012 Technology R&D 

• Total dielectric isolation 
– Lower S/D capacitances 
– Lower S/D leakages 
– Latch-up immunity 

 

• Ultra-thin Body (TSi~1/3LG) 
– Excellent short-channel immunity  

• low SCE, DIBL 
• No channel doping, no pocket implant 

– Improved VT variation 

• Ultra-thin BOX option 
– Back-bias control 

• Ground-plane implantation 
– VT adjustment 

Thin Silicon Channel 

10 

1Silicon on Insulator 12

Part I: From Transistors to Logic Gates

• The Fundamental Element: MOSFET Transistor 
• Design of CMOS Cells: Combinatorial Logic
• Memory Cells
• Delay and Power ConsumpEon
• Synchronous Design
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Combinatorial Logic Cells

• Complementary Logic (CMOS)

S

CMOS Inverter

Id

Vdd

Vss

E
S = 1E = 0

Rp

Rn CL

E = 1 S = 0
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NAND and NOR

A B

B

A

S

NOR

A B S
0 0 1
0 1 0
1 0 0
1 1 0

B
A S

A B

B

A

S
NAND

A B S
0 0 1
0 1 1
1 0 1
1 1 0

B
A S

0

1
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Layout Design

A B

B

A

S

Transistor 
Schematic

LayoutDesign Domains, Abstractions, and Principles • Full-Custom Design •

Custom Cells: Optimizing Connections

L12 – CMOS Layout   96.371 – Fall 2002 10/16/02

Optimizing connections

Which is the better gate layout?

� considering node capacitances?

� considering “composibility” with neighboring gates?

Which does this gate do?
Which is better considering node capacitances?

Adapted from [Terman’02]

ECE 5745 T04: Full-Custom Design Methodology 26 / 53

Simple Transistor RC Model Simple Wire RC Model • MOSFET Fabrication •

Bulk vs. Silicon-on-Insulator Processing

I Eliminates parasitic capacitance between source/drain and the body
! lower energy, higher performance

I Lower subthreshold leakage, but threshold voltage varies over time

I 10–15% increase in total manufacturing cost due to substrate cost

CS250, UC Berkeley Fall ‘11Lecture 02, Introduction 1

Bulk versus SIO Processing
‣ “Silicon on Insulator”

49

‣ Lower parasitic capacitance -> lower energy, higher-performance
‣ Also used for “radiation hard” application (space craft) - saphhire 

instead of Oxide.
‣ 10 - 15% increase in total manufacturing cost due to substrate 

cost.

CS250, UC Berkeley Fall ‘11Lecture 02, Introduction 1

Lithography

‣ Current state-of-the-art 
photolithography tools 
use deep ultraviolet (DUV) 
light with wavelengths of 
248 and 193 nm, which 
allow minimum feature 
sizes down to 50 nm.

50

desired (drawn)

modified mask

exposure

‣ Optical proximity correction 
(OPC) is an enhancement 
technique commonly used to 
compensate for image errors 
due to diffraction or process 
effects.

Adapted from [Asanovic’11,Weste’11]

ECE 5745 T02: CMOS Devices 28 / 33

Silicon
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Complex Gates

• ! = #. % + ' + (

• The art of transistor sizing

– Equilibrate delay for 0 → 1
and 1 → 0 output 
transi=ons

– Minimize cell area
B

F

A

Vdd

C
D

A

2  

4   

4   4   

6   D

12  B
6   

12  C
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Complex Gates: Full Adder

• Full Adder

VDD
VDD

VDD

VDD

A B

Ci

S

Co

X

B

A

Ci A

BBA

Ci

A B Ci

Ci

B

A

Ci

A

B

BA

28 Transistors

Full 
Adder

Cin

Cout

Si
Ai

Bi

Ai Bi Ci Co Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Complex Func/ons

• 16-bit Adder (integer)32 Chapter 1

Figure 1.14 – 16-bit KSA. Red-striped square converts (x
i

, y
i

) to (p, g) (Equation 1.4) and
blue-striped square converts (p, g) to z

i

(Equation 1.8). Circles represent (p, g) compressors.

Thus, for the accurate multiplication of n-bit inputs, a 2n-bit result is returned. Therefore, com-
pared to addition where only 1 more bit is necessary, multiplication is a potential source for
high resource needs downstream, which definitely justifies the necessity of quantizing numbers
along computations, as presented in Section 1.3.2.

Integer multiplication can be split in two phases – generation of summand grid, and sum-
mand grid addition, leading to the scheme showed in Figure 1.15. Compared to higher-base,

Figure 1.15 – General integer multiplica-
tion principle applied on 6-bit input

Figure 1.16 – General visualization of 6-
bit multiplication summand grid

binary multiplication is much simpler. Indeed, only two values are possible for all summands,
0 or the value of the multiplicand, which can leads to major simplifications. Indeed, the gen-
eration of each line of the summand grid of an n-bit multiplier can be performed by n 2-to-1-
multiplexers selecting whether the input bits are x

i

or 0, controlled by the value of the bit y
j

corresponding to the current line. Therefore, the most expensive part of the multiplier in terms
of resources is the carry-save reduction of the summand grid to reduce it to a final addition.
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Part I: From Transistors to Logic Gates

• The Fundamental Element: MOSFET Transistor 
• Design of CMOS Cells: Combinatorial Logic
• Memory Cells
• Delay and Power Consumption
• Synchronous Design
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Storing Values

Latch
(SRAM)

QD

wr

wr

D Q QD

wr

Capacitor
(DRAM)

Q

D

Write

Read

Flip-Flop
(Register)

• Setup Time: Tsetup
• Hold Time: Thold
• PropagaGon Time: Tp

D Q QD

clk
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Memory

• L2 Cache contains 4 Millions SRAM cells
– Raw/column of 2000 cells

Bit line2L-K

Word line

A K

A K+1

A L-1

A 0

M.2K

A K-1

Sense amplifiers-Drivers

Column decoder

Input-Output
(M bits)

Ro
w

 d
ec

od
er

Storage
Cell
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Delay: Parasi-c Elements

• Drain-Source Resistance:
• Gate Capacitance:

tox

n+ n+

W
L

• Simple Transistor RC Model • Simple Wire RC Model MOSFET Fabrication

Key Qualitative Characteristics of MOSFET Transistors

Cg

Reff
Cd

Cd

6.375 Spring 2006 • L04 CMOS Transistors, Gates, and Wires • 7

Key qualitative characteristics of 
MOSFET transistors

• Threshold voltage sets when transistor turns on – also impacts leakage
• IDS is proportional to mobility x (W/L)
• NMOS mobility > PMOS mobility => ReffN < ReffP (assume mobility ratio is 2)
• Increase W = Increase I = Decrease Reff

• Increase L = Decrease I = Increase Reff

• Cg proportional to ( W x L ) and Cd proportional to W

Width

Length

Cg CdReff

VoutVin

I Vt sets when transistor turns
on, impacts leakage current

I Id / µ⇥ (W/L)

I µn > µp =) RN,eff < RP,eff

I Cg / (W ⇥ L)

I Cd / W

I " W = # Reff = " Id = "
Cd ,Cg

I " L = " Reff = # Id = " Cg

ECE 5745 T02: CMOS Devices 8 / 33

G

S

D

RDS

Cg

Cdb

Csb

RDS = L
W

1
k(Vdd�Vt)

C
g

= ✏W.L

t

ox

= W.L.C
ox

Delay / RDS .Cg / L2

V dd�V t

CG

Cdb/sb
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Power and Energy Consump4on 

• Dynamic power
– Charge and discharge of 

node capacitance
• Energy = 
• Power

• Static power: Ps
– Sub-threshold and 

junction leakage current

Vdd
Idd = Isc + Ic

IcIsc

C

Id

Vg

Vt (low)

Ioff

P
stati = N.I

o↵

.VddC.Vdd2

Pdyni
= C.Vdd

2.f .Prob0!1

24

Power at Higher Level

• Propagating activity

P =
X

i

⇥
↵i.fi.Ci.Vdd2 + Ileaki .Vdd

⇤
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Activity

• Ac)vity ai is the probability to have a 0→1
transi)ons at the output of a gate

• Example: AND gate
– PS = P(S=1) = PAPB

– ai = PS(1- PS)

• Ac)vity propaga)on

A B S
0 0 0
0 1 0
1 0 0
1 1 1

B
A S

1/2

1/2 1/4
a=3/16

B
A X

C
S1/41/2
1/8
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Propagating Activity is not So Simple

• Condi8onal probabili8es

• Glitches: gate delay
– Significant in arithme8c

B
A X

C
S1/41/2
1/8

B
A X

S1/41/2
1/4

1
1
0

1
0
1

1

0

0

0

Glitches
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Dynamic Power vs. Performance

• Decreasing Vdd reduces power but increases 
delay

0

1

2

3

4

5

6

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Supply voltage (VDD)

R
el

at
iv

e 
D

el
ay

 t d

0

2

4

6

8

10

R
el

at
iv

e 
P d

yn

Pdyni = ↵i.fclk.Ci.Vdd2

Delay / 1

Vdd �Vt
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Leakage vs. performance

• High performance • Low leakage

Id

Vg
Vt (high)

Ioff

Id

Vg
Vt (low)

Ioff

Delay / 1

Vdd �Vt

P
stati = N.I

o↵

.Vdd Ioff:
• Exponential in inverse of Vt
• Exponential in temperature
• Linear in device count 
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Minimum Energy per Operation

• Pu4ng all together

30

[Source: Intel]

On-Chip Interconnect?

• Gate delay decreases but… wire delay increases
• Crossing chip in 5-10 clock cycles
• Also affected by noise…

• Metal layers to 
reduce wire delay

• Repeaters

• Towards network-
on-chip

31

Conclusion: Power in CMOS

• Dynamic power
– 40-70% today 
– Decreasing relatively
– DVFS becomes more 

and more difficult

• Leakage power
– 20-50 % today 
– Increasing rapidly 

• number of transistors
• Vdd/Vt scaling

– CriLcal for memory

powerstaticrate
operation
energy

P +´=

P =
X

i

⇥
↵i.fi.Ci.Vdd2 + Ileaki .Vdd

⇤
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Inside (Simple) 
Processor Architecture
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Von Neumann Computers

• Processing address, data, 
control, on the same resources 

• Single memory for data and 
program

• Sequen=al behavior

• Prac=cally, most processors use 
Harvard model: separated data 
and program memory

CP
U

(C
en

tra
l P

ro
ce

ss
in

g 
Un

it)

M
em

or
y
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Instruc*on Set Architecture (ISA)

• ISA defines a programmer’s interface

• Each instruc*on is defined by coding (binary) and 
seman*cs

–L3Info – PFO/L3 R&I ARCSYS–40

Select 
Register

in RF 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A[4:0] B[4:0] C[4:0] OPX[10:0] OPCOD[5:0]

0 1 0 1 0 1 B = READ(@A)
1 1 0 0 0 1 WRITE(B,@A)
0 1 1 0 1 0 C = A + B
1 1 0 1 0 1 …
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Microarchitecture Pipeline

• Microarchitecture defines how instructions are 
executed (not unique)
ARCHITECTURE

42

Execu(on of an instruc(on involves

1. Instruc(on fetch
2. Decode and register fetch
3. ALU opera(on
4. Memory opera(on (op(onal) 
5. Write back (op(onal) 
and compute address of next instruc(on 



ARCHITECTURE
Fetch Instruction

Decode Instr.
Load Registers

Execute Instr.

Read/Write Memory

Write Back to
Registers

Compute next address 44

Achieving Higher Performance

• Branch/value prediction
• Cache memory
• In-core parallelism
– Multiple Fus
– Out of order execution
– VLIW+good compilers

• Multiple cores on a 
single chip
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Abstrac*on in Computer Systems

• Maximum of an array T

int largest(int T[], int length) { 

int max = T[0]; 

for(i=1; i<length; i++) { 

if (max < T[i]) { 

max = T[i]; 

} 

} 

return max; 

} 

0 1 0 1 0 1
1 1 0 0 0 1
0 1 1 0 1 0
1 1 0 1 0 1

numpy.amax(T)

R1 ← *R2 // max

loop R2 ← R2+1 // T[]

R3 ← *R2

R1 < R3 ?

BZ next

R1 ← R3

next B loop

0 1 0 1 0 1
1 1 0 0 0 1
0 1 1 0 1 0
1 1 0 1 0 1
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What’s the Opportunity?
Matrix Multiply: relative speedup to a Python version (18 core Intel)

32
from: “There’s Plenty of Room at the Top,” Leiserson, et. al.,  to appear.

Abstraction and Performance? 

• Matrix Multiply: relative speedup to a Python 
version (18 core Intel)

[“There’s Plenty of Room at the Top,” Leiserson, et. al.]
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Energy Cost in a Processor

• Opera4on:
– 32-bit addi4on: 0.05pJ
– 16-bit mul4ply: 0.25pJ
– 64-bit FPU: 20pJ/op

• Instruc4on:
– fetch, decode, read 2 

operands from RF, execute, 
write back 

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

MIPS Proc.
91 pJ/instr.
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Energy Cost in a Processor

• Fetching operands costs more than computing

28nm
CMOS

500 pJ Efficient
off-chip 
link

16 nJ DRAM
Rd/Wr

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

256-bit
buses

50 pJ
256-bit access

8 kB SRAM

[Dally, IPDPS’11]
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Mul&core: it’s all a trick!
Power and U&liza&on Walls

55

And then came the “Power Wall”

Source:  C. Batten, Cornell 

Power Density: 100 W/chip 
(~25W/cm2) is a limit



56

and the “Multicore Era”

• Increasing performance by increasing # of cores

Course Motivation Interconnection Network Basics Course Logistics

Examples of Multicore and Manycore Processors

ECE 5970 L01: Course Overview 9 / 29

–Source:  C. Batten, Cornell 62

Moving to multicore

• 1 core@2GHz@1.2V@1W

• 1 core@1GHz@0.8V@0.25W 

• 2 cores@1GHz@0.8V@0.5W
• But… twice area (and not so simple)

• Advanced technology nodes?

2GHz 1W
1.2V

1GHz 0.22W
0.8V

1GHz

1GHz

63

Technology Scaling

28 nm 20 nm 14 nm

Planar FDSOI Transistor Advantages 

February 2012 Technology R&D 

• Total dielectric isolation 
– Lower S/D capacitances 
– Lower S/D leakages 
– Latch-up immunity 

 

• Ultra-thin Body (TSi~1/3LG) 
– Excellent short-channel immunity  

• low SCE, DIBL 
• No channel doping, no pocket implant 

– Improved VT variation 

• Ultra-thin BOX option 
– Back-bias control 

• Ground-plane implantation 
– VT adjustment 

Thin Silicon Channel 

10 

Classical (Dennard’s) scaling
Device count S2

Device frequency S
Capacitance, Vdd 1/S
Device power 1/S2

Utilization 1

Corei

100W@f

Corei

50W@1.4.f

S
Intel’s Xeon Chip

64

End of Dennard’s Scaling

• Energy efficiency is not scaling along 
with integra9on capacity

• U9liza9on Wall: percentage of a chip that can 
switch at full frequency drops exponen9ally 

• Replace dark cores with specialized 
cores (10-100x more energy efficient)

Leakage limited scaling
Device count  S2

Device frequency S
Device power (cap) 1/S
Device power (Vdd) ~1
Utilization 1/S2

Corei

100W@f

Corei

100W@1.4.f
(w/o) leakage
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End of Growth of Speed?End of Growth of Single Program Speed?

22

End of 
the 

Line?
2X / 

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore
2X / 3.5 

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs
(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018
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Part III: Pushing the 
Accelerator!

67

What is a HW accelerator?

• 16 processors

• 38 HW blocks

• 140 memory blocks

• 5 Gbytes/s on-chip 
interconnec@on 
network

68

D-cache
6% Datapath

3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Energy Savings in Specialized HW

MIPS baseline
91 pJ/instr.

Specialized core
8 pJ/instr.

[Goulding et al., Hot Chips’10]
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An example: Bitcoin Mining

Type Model Mhash/s Mhash/J Power (W)

GPP Intel Xeon X5355 (dual) 22.76 0.09 120

GPP ARMCortex-A9 0.57 1.14 1.5

GPP Intel Core i7 3930k 66.6 0.51 130

GPU AMD 7970x3 2050 2.41 850

GPU Nvidia GTX460 158 0.66 240

ASIC AntMiner S1 180.000 500 360

ASIC AntMiner S5 1.155.000 1957 590

FPGA Bitcoin Dominator X5000 100 14.7 6.8

FPGA Butterflylabs Mini Rig 25.200 20.16 1250

70

Making ANN Inference more Efficient

• Main motivation: AlphaGo consumes around 250,000 
Watts!

• Bring Logic and Memory closer
• Compute less precisely

• Google Tensor
Processing Units
(TPU) 
– Computations close 

to memory 
– 8 bit operations

Ideas for making AI more energy efficient

12

Implementing these ideas with CMOS digital architectures

1. Bring Logic and Memory closer
2. Compute less precisely

Google Tensor Processing 
Units (TPUs)
- Logic close to memory
- 8 bit Fixed Point

New versions of AlphaGo consume a lot less than 250,000 Watts!

Implementing these ideas with novel technologies to go a lot further: this talk!

Jouppi, …,
David Patterson
et al,
ISCA 2017
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The Efficiency of Specialization

–* Source: Ning Zhang and Bob Brodersen, ISSCC data

–100-1000X Gap in Efficiency … but Specialization 
comes with Penalties in Programmability

–ASICs

–FPGAs

75

Reconfigurable 
Hardware Accelerators
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Field Programmable Gate Array (FPGA)

>50MB RAM blocks

>4K Multipliers/Adders

>2M Configurable Logic Blocks

77

Field Programmable Gate Array (FPGA)

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

6-LUT
BLE

78

The Program is the Configuration

Chapter 2 Controllers for Wireless Sensor Network Nodes 21

FSM N NCLB MCW Lav

abs 5 50 3 3.55
Crc8 6 84 4 4.80

receiveData 6 94 4 4.58
Crc16 7 143 5 7.25

firBasic 7 217 7 7.89
calcNeighbor 8 266 7 8.05

Table 2.1: Resource utilization NCLB , minimum channel width (MCW) and average
interconnection length (Lav) required for FSMs on eFPGA-like array.

descriptions of the FSMs were obtained from the work of [33]. The table shows the num-

ber of CLBs (NCLB) and minimum channel width (MCW) required for implementation

of each FSM with N state register bits along with average length of an interconnection

segment in terms of number of CLBs spanned (Lav). Clearly for the targeted eFPGA

architecture with channel width of 4, only the first three FSMs listed in the table can

be mapped whereas the last three FSMs face constraints with respect to channel width,

although the number of CLBs are sufficient for logic function mapping. This reinforces

a well known contention that in a FPGA, the complexity of interconnection network for

signal routing creates a bottleneck as the complexity of logic circuit increases [50]. To

proceed with a study of resource utilization and power estimation, the architecture is

scaled to accommodate larger FSMs of Table 2.1. A visual representation of interconnec-

tion networks required for two FSMs in an eFPGA-like architecture with required MCW

as obtained from a mapping and PnR with VTR tool is shown in Fig. 2.9.

(a) abs (b) calcNeighbor

Figure 2.9: Interconnection network complexities in mappings of two FSMs.
79

The Program is the Configuration
24 Chapter 2 Controllers for Wireless Sensor Network Nodes

(a) Crc16 (b) calcNeighbor

Figure 2.10: Compact placement and routing in mappings of two FSMs.

2. The dynamic energy due to routing lines along clock networks and static energy of

buffers for both routing channels and clock networks are not considered.

3. The dynamic energy due to reconfiguration of eFPGA by shifting configuration bits

in a scan chain fashion is also neglected. This is due to the fact that the eFPGA

is usually programmed to be in a particular configuration for a long time so that

average power can be considered small.

4. The bias and transistor size dependent leakage current of NMOS and PMOS tran-

sistors in switches are ignored. Such currents are mostly sneak currents and are

negligible in the context of transmission gates.

5. Spatial independence of dynamic energy consumption in mapped CLBs across the

eFPGA is assumed. As will be shown in the next subsection dynamic energy con-

sumption within a LUT is significantly lower than that of interconnection network

and will have negligible impact on estimation of overall energy consumption [54].

The energy consumed due to transition of signal states in the logic of CLB and metal

lines of the interconnection network due to changing inputs and outputs is given by

EdynFSM ,av = NCLBEdynCLB ,av + EdynSW ,av (2.3)

where EdynFSM ,av, EdynCLB ,av, EdynSW ,av denote average energy consumed in all the blocks

used, one CLB and the switching network respectively. In order to estimate EdynCLB ,av

10000 random inputs are applied to CLB logic and switching capacitance is determined
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Space-Time Computation

Ecole Thématique ARCHI 09 – Pleumeur-Bodou Jeudi 2 avril 2009

Lilian Bossuet  - lilian.bossuet@ims-bordeaux.fr 1

Lilian BossuetLilian Bossuet
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if (max < T[i]) { 

max = T[i]; 
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for(i=1; i<N; i++) { 

for(j=1; j<M; j++) { 

y[i][j]+=x[i][j]*h[j][i]

} 

} 
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FPGA Acceleration

• FPGAs can run multiple tasks in parallel

• Towards heterogeneous multicores
–HARDIESSE

FPGA accelerators 
for HPC/Cloud

82

Amazon AWS EC2 F1 

• Up to 8 Xilinx UltraScale+ 
FPGA devices in a single 
EC2/F1 instance 

© Copyright 2018 Xilinx

Instance Size FPGAs DDR-4 (GiB) vCPUs Instance 
Memory (GiB)

NVMe Instance 
Storage (GB)

Network 
Bandwidth

f1.2xlarge 1 4 x 16 8 122 1 x 470 Up to 10 Gbps

f1.16xlarge 8 32 x 16 64 976 4 x 940 25 Gbps

Up to 8 Xilinx UltraScale+ 16nm VU9P FPGA devices in a single instance
– f1.16xlarge size provides:

• 8 FPGAs, each with over 2 million customer-accessible FPGA programmable logic cells and over 5000 
programmable DSP blocks

– Each of the 8 FPGAs has 4 DDR-4 interfaces, with each interface accessing a 16GiB, 72-bit 
wide, ECC-protected memory

F1 Instances

Page 4

© Copyright 2018 Xilinx

AWS EC2 F1 Instance SDAccel Flow

Page 11

AWS EC2 F1 Platform 

© Copyright 2018 Xilinx

Amazon F1 Development Flow

AWS Hardware Development Kit 
provides access to necessary tools, 
scripts and files

Execute your own accelerated 
application or publish it on the 
AWS marketplace

aws.amazon.com

Development in
the AWS Cloud
with SDAccel

Development 
on premise

with SDAccel 

Hardware 
Development Kit

Accelerated 
Application

Page 12
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Time has Come for Specialization

• Microsoft Unveils Catapult to Accelerate Bing 
– One FPGA per blade 
– 6�8 2-D torus topology 
– High-end Stratix V FPGAs 

• Running Bing Kernels for feature 
extraction and machine learning

• Increase ranking throughput by 95% at 
comparable latency to software-only 

• Increase power consumption by 10% 
• Increase total cost of ownership by 

less than 30%

Specialization: !
An idea whose time has come"

47&

•  One(FPGA(per(blade(
•  All(FPGAS(connected(in(half(rack(
•  6×8(2VD(torus(topology(
•  HighVend(StraXx(V(FPGAs((
•  Running(Bing(Kernels(for(feature(

extracXon(and(machine(learning(

Microsol&Unveils&Catapult&to&&
Accelerate&Bing!&

[EcoCloud&Annual&Event,&June&5th,&2014]&
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Part IV: Emerging 
Computing Paradigms

86

How Do Ar*ficial Neural Networks Work?

• Neural networks are not fundamentally complicated 
• The issue: finding the good weights with learning

!" = $ %
&
'&"(&

Artificial Neural Networks (ANNs)

Classifier

5

=

output

input

hidden

First, quick recap on ANNs (will talk about biological NNs later on), especially the Multi-Layer Perceptron (MLP).
Main usage: as a classifier (can map n-characteristic input data to p classes, and learn separation between classes).

Classifier
input hidden output

neurons

synapses

(&

'&"

!"
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What ANNs Can DoWhat ANNs Can Do

10

Classification

Approximation

Clustering

Optimization

The four major types of algorithms which ANNs are good at.

[O. Temam, ISCA10] 88

So What’s New?

• Computer performance (e.g. GPU) can train neural 
networks with millions of weights 

• Access to gigantic datasets
– Billions of images
– Training can take weeks! 

• More complex ANNs
– Deep Convolutional Neural Networks (CNN)
– Long Short-Term Memory (LSTM) Recurrent Neural Networks

• Trendy vision applications
• Emerging technologies offer opportunities

Why do neural networks work so well now?

• Since 2012, access to big computers / graphics card, and to 
gigantic datasets (billions of images) to train neural networks 
with millions of weights
– Training can take weeks!

• Also, neural networks have become more complex than previous slide 
(convolutional,  LSTM…)

7

Imagenet

Imagenet

Convergence of trends
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So What’s New?

• Deeper Networks

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Alexnet

Alex Krizhevsky et al.,
Imagenet classification with
deep convolutional neural 
networks, 2012. 90

Complexity of Deep CNNs

• 10-30 GOPS 
– Mainly convolutions

• 10-200 MB 
– Fully-connected layers

Convolutional Neural Network - Trends

Christos Bouganis 4
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And What About Energy?

• The brain seems to have something very special 
about energy efficiency 

• Computers: arithmetic but chiefly memory transfers 

Real vs. Artificial Intelligence

4

>250 000 Watt20 Watt

Lee Sedol (brain) AlphaGo (CPU+GPU with tree
seach and deep neural networks)

Since then, very week, we hear about fantastic achievements of Artificial Intelligence…

The brain seems to have something 
very special about energy efficiency

2016

[D. Querlioz, CNRS] 92

Real Biological Neurons

• Brain computes with strong approxima8ons (mostly analog) 
based on low power, slow, noisy and variable nano-devices

[D. Querlioz, CNRS]

The nanodevice of biology

Controlled current
source
Ion channel

~5nm

~500nm

Memory totally colocated with computation!

Connection, memory,
nonlinear dynamics, 
Synapses

Neuron compute using nanoelectronics/nanoionics devices

9

~500nm

Why do computers use a lot of energy for neural 
networks? 2. They compute too accurately!

• Brain computes in a mostly analog fashion based on low 
power, slow, noisy and variable nanodevices!
– Approximate computing

• CPUs/GPUs compute in extremely precise 64 bits/32 bits 
floating point
– Deterministic precise computing

10

Hille et al, 2001

C
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Ion channels Synapses
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Humans Approximate….
But Computers Do Not!

• Leads to inefficiency
• Overkill (for many applications)

YES

NO

94

Many Applica-ons are Error Resilient

• Produce outputs of acceptable quality 
despite approximate computation
– Perceptual limitations
– Redundancy in data and/or computations
– Noisy inputs

• Digital communications, 
media processing, data 
mining, machine 
learning, web search, … 

e.g. Image Segmentation

95

Approximate Computing

• Play with approximations to reduce energy and 
increase execution speed while keeping 
accuracy in acceptable limits
– Relaxing the need for fully precise operations 

• Design-time/run-time
• Abstraction levels

Application quality degradation
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Approximate Computing

• Three dimensions to explore 

Data

Computation

Har
dw

are

Reliable

Variable
Less p

recisio
n

Exact Less Exact

Accurate

Less accurate
Less data 

Less up-to-date

Note: Precision (#bits) ≠ Accuracy (quality)
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K-Means Clustering

• Data mining, image 
classification, etc.

• A multidimensional 
space is organized as:
– k clusters Si, 
– Si defined by its 

centroid µi

• Finding the set of clusters 
satisfying
is NP-hard (solved here by Lloyd’s iterations)

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {S

i

}
i2[0,k�1] satisfying

argmin

S

kX

i=1

X

x2Si

kx� µ

i

k2 , (1)

where µ

i

is the centroid of cluster S

i

. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size N

data

, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2

e

.
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acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
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Approximate K-Means Clustering

• W = 16 bits, accuracy = 10−4

• No major (visible) difference with reference

Reference: double Floating-point: ct_float16

5-bit exponent

11-bit mantissa
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Approximate K-Means Clustering

• W = 16 bits, accuracy = 10−4

• No major (visible) difference with reference

Fixed-Point: ac_fixed16

3-bit integer part
13-bit fractional part

Floating-point: ct_float16

5-bit exponent
11-bit mantissa 100

Approximate K-Means Clustering

• W = 8 bits, accuracy = 10−4

• 8-bit float is still practical

Floating-Point: ct_float8

5-bit exponent
3-bit mantissa

Reference: double
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Approximate K-Means Clustering

• W = 8 bits, accuracy = 10−4

• 8-bit float is better and still practical

Fixed-Point: ac_fixed8

3-bit integer part
5-bit fractional part

FloaHng-Point: ct_float8

5-bit exponent
3-bit manHssa 102

Deep Convolutional Neural Networks

• General organization

• Layers

[Motamedi et al., 2016]

–...
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Resilience

• Our biological neurons are fault tolerant 
to computing errors and noisy inputs

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and lsat ltteer be at the rghit
pclae. And we spnet hlaf our lfie larennig how
to splel wrods. Amzanig, no!

104

Approximate CNNs

• 10k images, MNIST/Lenet
• Fixed-Point Arithmetic

–I = 4 bits

–W = 12 bits
W = 8 bits

I = 2 bits
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Summary

• Energy consumption is a major issue
– True in embedded systems since 20 years
– True in HPC, mobile clouds, data centers, etc.

• End of Moore’s law…

• Multicores but utilization wall
– Percentage of a chip that can switch 

at full frequency drops exponentially
Dark Silicon
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What’s next?

• Dark Silicon is also an opportunity
– Heterogeneous manycore architectures

• Efficiency of hardware specialization
– Domain-specific architectures and languages

• Computing just right 
– @design-time or @run- time
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What’s next?

• Emerging devices

• Cells, brain, neurons have “analog” behavior
• And compute with very low precision

• Making neuromorphic compuEng more efficient

Nanophysics to the rescue?
• Emerging resistive nonvolatile memory: 

– much faster & more reliable than FLASH
– can be embedded at core of CMOS 

• In heavy industry development
Recent announcements: Qualcomm, Toshiba, Intel/Micron, Samsung…
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