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Energy Efficiency Challenges Improving Energy Efficiency

* Teraops/Watt? Technology?

— 102 op./s/W = 1 pl/op — What can advanced technology nodes bring
— Several orders of magnitude from current processors e Accelerate (&
and multicores — Energy advantages of specialized hardware
* From Sensors to Clouds & . Approximate (o
= 1TOPS @ 1W = 1 GOPS @ 1mW — Playing with accuracy to reduce energy
= Clouds, embedded systems i * Manage the Power =
% 1 MOPS @ 1004W — Dynamic Voltage/frequency (Over-)Scaling
e g e — Energy Harvesting sensor nodes
< &

Intel CPU+FPGA Micro Mote



Key Questions

Part I: From Transistors to Logic Gates

— Basic Element, Delay, Power Consumption
— The Issue of Synchronization

Part Il: Inside a Processor

A deep dive into processors... (I hope not too deep)
Basics on transistors, logic gates, registers, memory
* Energy consumption of processor core/uncore

— Von-Neumann Architecture, Instruction Set Architecture,

Computers are parallel S
— Billions of transistors doing the job at the same time — Multicore Processors, Power and Utilization Walls
— Are multicore processors the solution? Part Ill: Pushing the Accelerator!
S — Hardware Accelerators
* Specializing the computer

: . — Reconfigurable Computing
— Reconfigurable computing Part IV: Emerging Computing Paradigms

* Emerging paradigms — Neuromorphic Computing
: : : —A imate C ti
— Neuromorphic, approximate, stochastic s PN
. — Chips are going 3D 6

Integrated Circuit Design Part |: From Transistors to Logic Gates

The Fundamental Element: MOSFET Transistor
Design of CMOS Cells: Combinatorial Logic

* Chips, logic gates and transistors

Memory Cells

5
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Delay and Power Consumption

B 0 8 o v -

Synchronous Design

: i ,
Intel’s Xeon Chip

#pragma hls_design top El
void my design (int *a, int *o) {
prc static int 1i,3; o
bec for(i=1; i<=n-1; i++) —
i for(3=1; 3<=n-1; j++)
alill3] = (ari-11[jl+alillj]+alil[j-11)/3.0; :D
}
end if;
end process; ,P:l 8




Fundamental Building Block: - _ ]
MOSEET Transistor The Basic Element: Transistor

i : : D
Now several billions or transistors Top view e Transistor . _l i
S D as a switch T'
ST |
W: width s
* Vgs > Vt: NMOS on I
— Resistance Rp;s __‘ Vgs
Vt: threshold voltage
D O O S
- L: length
-] D i - * Vgs < Vt: NMOS off _
. g G t Gl | * Gate: capacitance Cg
g > * Switch: resistance Rps
S Substrate I" | s
—_— L . ¢ g
MOSFET: Metal Oxide Silicium Field Effect Cross section . -

Part I: From Transistors to Logic Gates

Transistors Nowadays

* Intel FinFET: transistors go 3D

Design of CMOS Cells: Combinatorial Logic

Memory Cells

Delay and Power Consumption

Synchronous Design

* Fully Depleted SOI*

— Low-power

1Silicon on Insulator 12



CMOS Inverter
Vdd
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Transistor
Schematic

A%Gj?ps

Layout

= XK

>
= X

[[tegssdll]
R

Silicon

AALS

15

- [ e

* The art of transistor sizing

— Equilibrate delay for 0 —» 1
and 1 — 0 output
transitions

— Minimize cell area

Combinatorial Logic Cells NAND and NOR

* Complementary Logic (CMOS)

S

|

NOR
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Layout Design Complex Gates
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Complex Gates: Full Adder Complex Functions

* Full Adder . * 16-bit Adder (integer)
A_I>FuIISi
Bi , Adder is Yis Yis Uis Uil Mio Yo W Ur Yo Y5 Wi Y3 5w Yo
—_—
[ Ai | Bi | Ci|Co] Si |
0 00 0O Coutl
0O 0 1 0 1
0O 1 0 0 1
0O 1 1 1 0
1 0 0 0 1
1 0 1 1 O J
110 1 0 :
1 1 1 1 1
.44

Z15 214 213 212 211 210 29 28 27 26 X5 24 23 22 Z1 20
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Part I: From Transistors to Logic Gates Storing Values
Capacitor Latch Flip-Flop
(DRAM) (SRAM) (Register)
* Memory Cells "“ ?'*Q DTQ
* Delay and Power Consumption . i _r'
: Dﬁ e :
* Synchronous Design el fan = * Setup Time: Tsetup
Write wr * Hold Time: Thold
* Propagation Time: Tp
D Q
- wr

DRl e W we

0

19 el Rt



e L2 Cache contains 4 Millions SRAM cells
— Raw/column of 2000 cells

LK Bit line

e

r Word line

.
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Sense amplifiers-Drivers

EEEEEE!

Column decoder

Input-Output
(M bits)

* Dynamic power
— Charge and discharge of
node capacitance

* Energy= C.vdd?
* Power

deni = CVdd2 .f.PI'ObO_>1

vdd
Idd = Isc + Ic

Storage

Cell

21

» Static power: Ps

— Sub-

junc

threshold and
tion leakage current

Putat, = NIog.Vdd

Ve

N
Vt (low) 23

91— C‘I
Cy $ | $ Cy chb/Sb

* Drain-Source Resistance: Rps = i tvi,=v)
* Gate Capacitance: @ % = W.L.C,,

2
Delay oxc Rps.Cy —VddL_Vt
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Power and Energy Consumption Power at Higher Level

* Propagating activity

SRS g

P =) [01£.C;.Vdd?® + Licar,. Vdd]

i

24



* Activity o is the probability to have a 0->1

transitions at the output of a gate A :DL
S
« Example: AND gate em 00 178
o Ps = P(Szl) = PAPB 1/2
- 2 :Dfs
e e * Glitches: gate delay

* Activity propagation

i X
(GRS

1/8

* Conditional probabilities

A X
1/4

— Significant in arithmetic

25
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O =

* High performance

dela 2
y deni = Cki.fclk.ci.Vdd
Id
6 10 1
Delay « ————
i ° \ T8 i NV
34 \ 1 n% lott
° 3 2 V
z, T4 % - 2
S 1 U ],¢ Vt (low)
0 T T T T T T T 0 Pstati s N'IOHVdd
08 1 12 14 16 18 2 22 24
Supply voltage (VDD) Delay 6« ———
Vaa — Vi

1:

amp:

0

0

Glitches j

* Low leakage

loff:

Vg
Vt (high)

* Exponential in inverse of Vt
* Exponential in temperature
* Linear in device count
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Dynamic Power vs. Performance Leakage vs. performance

* Decreasing Vdd reduces power but increases

28



Minimum Energy per Operation On-Chip Interconnect?

* Putting all together * Gate delay decreases but... wire delay increases
* Crossing chip in 5-10 clock cycles
* Also affected by noise...
* Metal layers to
reduce wire delay
* Repeaters

* Towards network-
on-chip

Conclusion: Power in CMQOS

P=) [01fi.Ci.Vdd?® + Iieay,. Vdd]

* Dynamic power * Leakage power d S | )
— 40-70% today — 20-50 % today I n SI e ( I m p e
— Decreasing relatively — Increasing rapidly .
— DVFS becomes more Processor Architecture
and more difficult e Vdd/Vt scaling

— Critical for memory

energy

B X rate+ static power

operation

30

36



Von Neumann Computers Instruction Set Architecture (ISA)

* Processing address, data,
control, on the same resources

* |ISA defines a programmer’s interface
* Each instruction is defined by coding (binary) and

* Single memory for data and semantics
program E
 Sequential behavior T
RSeeliict:;r o[1]o[1[o[1] B = READ(@A)
sl 1|1{0]0|0[1] WRITE(B,@A) |,
* Practically, most processors use I NIV CIE B
Harvard model: separated data B
and program memory [ Ao B[4:0] 40 | OPX[10:0] | opcop[s:0] |
37 40

Microarchitecture Pipeline Execution of an instruction involves

Instruction fetch

* Microarchitecture defines how instructions are
executed (not unique)

Decode and register fetch

ALU operation

Memory operation (optional)

Write back (optional)

and compute address of next instruction

e R

41 42



Decode Instr.
Load Registers

Fetch Instruction

Compute next address

| Read/Write Memory

Execute Instr.

Write Back to
Registers

Abstraction in Computer Systems

* Maximum of an array T

numpy.amax(T)

intslargeskGintETHsrsntitliengthla
int max = T[0];
for(i=1; i<length; i++) {
if (max < T[i]) {
max = T[1i];
}
}

return max;

}

~lofr]o
I
olr|O|O
=R l=R =R
oflr|O|O
RO~ ]|O
I
olr|o]o
~lo|lo|-
ol~|o]o
ROk |~

R1
loop R2
R3
R1
BZ
R1

next

«— *R2

«— R2+1
«— *R2

SER3H?
next

«— R3

// max
LT

B loop
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Achieving Higher Performance

Branch/value prediction
Cache memory

* In-core parallelism
— Multiple Fus
— Out of order execution
— VLIW+good compilers

B | 8 o

Multiple cores on a
single chip

44

Abstraction and Performance?

* Matrix Multiply: relative speedup to a Python
version (18 core Intel)

[“There’s Plenty of Room at the Top,” Leiserson, et. al.] 5



Energy Cost in a Processor Energy Cost in a Processor

* Operation: * Fetching operands costs more than computing

— 32-bit addition: 0.05pJ

— 16-bit multiply: 0.25pJ e —-f R o L - RA/Wr
— 64-bit FPU: 20pJ/op
e £ i e
link
2 InStrUCtlon 256—bitaccess/

— fetch, decode, read 2 8 kB SRAM
operands from RF, execute, e
write back MIPS Proc.
91 pJ/instr.
49 50

IH

And then came the “Power Wal

“:I~ el 45-Core TS ] Transisiorns
Peototype Thousands)
10° AMD 4.Cose BB d
Opheron 5.
e ¥ o 'S Bls
10° el B Lt Single-Throas

Palonrancs

" 1+’ 1 I . i .':‘?‘;‘ aTh (SoecINT
Multicore: it’s all a trick! ' | vec ppra oy R o 7T S
MM . ... "', --..'-<4 ol A ,\'r..‘_-.‘ y
Power and Utilization Walls L O .l S i e
- 2 el Pow
10 o M d T "; " :'\_':‘ - ,'.:u--_
. 3 ": v ') ,l(l .
10’ o . AT ‘ L Power Density: 100 W/chip
10" (~25W/icm?) is a limit
‘-!'.'r-'i\ 1680 1665 1920 1995 2000 2005 2010 2015
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Source: C. Batten, Cornell



and the “Multicore Era”

* Increasing performance by increasing # of cores

256 Cores
512
-4-way SIMD FMACs @ 25-5GHz X
256 | . 5-10 TFlops on one chip ®
, 128 | Some apps require 1 byte/flop TRl Manycore
e el Need 5-10 TB/s of off-chip BW | O el Era
8 - Need 5-10 TB/s of on-chip BW too! Tilges &
5 % Som o S50
o 16 MIT- @ Raza@ @ ®Rock
Ke} RAW
IS ) eCell
5 8 Niagra @ @ Nehalem
z Barcelona
4 @@ Nehalem
» Powert | Optergn @ XBox360
286 386 486 Pentum P2 p3 ps COre2  Power6
1 o0 o o 0000 O-ltanium
Athalon
1980 1985 1990 1995 2000 2005 2010 2015 2020

—Source: C. Batten, Cornell

Technology Scaling

28 nm

Classical (Dennard’s) scaling

-1

20 nm

Device count

SZ

Device frequency S
Capacitance, Vdd 1/S
Device power 1/52
Utilization 1

14 nm

Core;

100W@f

Cors;

50W@1.4.f

Moving to multicore

* 1core@2GHz@1.2V@1W 2GHz 15y
* 1core@1GHz@0.8V@0.25W 1GHz 8:5\2/\’\’
* 2 cores@1GHz@0.8V@0.5W 1GHz
* But... twice area (and not so simple)
1GHz
e Advanced technology nodes?
56 62

End of Dennard’s Scaling

* Energy efficiency is not scaling along
with integration capacity

Leakage limited scaling

Device count 2 Core; Corg;

Device frequency  |S

Device power (cap) |1/S

Device power (Vyg) [~1

Utilization /57 100W@1.4.f
100W@f (w/o) leakage

-

» Utilization Wall: percentage of a chip that can
switch at full frequency drops exponentially

* Replace dark cores with specialized
63 64

cores (10-100x more energy efficient)



End of Growth of Speed?

40 yours of Processer Petformance

End of

the
LAUEE Line?

dahl’s B)'¢}
End of Law BIRVES
Dennard = ()

Part lll: Pushing the
Accelerator!

Scaling = 2X/
= 6 yrs
Multicore (12%lyr)
cisc 2X /3.5
2X/3.5yrs yre

(22%lyr) (23%Iyr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

65 66

What is a HW accelerator? Energy Savings in Specialized HW

D-cache

0,
%Datapath
3%

* 16 processors 7

e 38 HW blocks Ache
/ 23%

* 140 memory blocks

\ Datapath

* 5 Gbytes/s on-chip Fetch/ 38%
interconnection Decode
19%
network _
eg. File
14%
MIPS baseline Specialized core
91 pJ/instr. 8 pJ/instr.

67 [Goulding et al., Hot Chips’10] 68



An example: Bitcoin Mining ‘ Making ANN Inference more Efficient

Type Model Mhash/s Mhash/) Power (W) * Main motivation: AlphaGo consumes around 250,000

GPP | Intel Xeon X5355 (dual) 22.76 0.09 120 Watts!

GPP | ARMCortex-A9 0.57 1.14 1.5 * Bring Logic and Memory closer

GPP | Intel Core i7 3930k 66.6 0.51 130 . Compute less precisely

GPU | AMD 7970x3 2050 2.41 850

GPU | Nvidia GTX460 158 0.66 240 S aSor ProGNig Uk * Google jl'ensor_

ASIC | AntMiner S1 180.000 500 360 , Processing Units
ASIC | AntMiner S5 1.155.000 1957 590 (TPU)

FPGA | Bitcoin Dominator X5000 100 14.7 6.8 — Computations close
FPGA | Butterflylabs Mini Rig 25.200 20.16 1250 to memory

— 8 bit operations

69

BITCOIN MINER

The Efficiency of Specialization

Dedicated Hw
/- —ASICs
: 100X
B —FPGAs i

Reconfigurable
Hardware Accelerators
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1 4 5 € 7 8 030 1 12 13 M OIS 16
Procossar Narier (sarmed Dy 0250aacy)

G (LA

—* Source: Ning Zhang and Bob Brodersen, ISSCC data

—100-1000X Gap in Efficiency ... but Specialization
comes with Penalties in Programmability 71 75




Field Programmable Gate Array (FPGA)

>4K Multipliers/Adders

Bk

>50MB RAM blocks

Field Programmable Gate Array (FPGA)

CLB

CLB

>2M Configurable Logic Blocks

R s

The Program is the Configuration
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(b) calcNeighbor
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FPGA Acceleration

Space-Time Computation

for(i=1; i<length; i++) { onliet s ) _ _
for(j=1; j<M; j++) { * FPGAs can run multiple tasks in parallel

if (max < T[i]) {
max = T[i]; YIL1031+=x[11031*h[J1[1]

} }
} ! 3
T %F[ T
o ] o] L
FPGA accelerators
E]P  Towards heterogeneous multicores =
80 81

Amazon AWS EC2 F1

“ ez, r:\ i * Microsoft Unveils Catapult to Accelerate Bing
= Y = jé":gg ., — One FPGA per blade
o ; 7& — 6 X 8 2-D torus topology
— High-end Stratix V FPGAs
Lo ey . * Running Bing Kernels for feature
S E— . i extraction and machine learning
e e T | e | e * Increase ranking throughput by 95% at

comparable latency to software-only

* Up to 8 Xilinx UltraScale+
* Increase power consumption by 10%

FPGA devices in a single
EC2/F1 instance * Increase total cost of ownership by

less than 30%
83

AWS EC2 F1 Platform 82



How Do Artificial Neural Networks Work?

Part IV: Emerging
Computing Paradigms

) neurons

: : Classifier
input hidden output

* Neural networks are not fundamentally complicated
= * The issue: finding the good weights with learning

What ANNs Can Do So What’s New?

Convergence of trends

* Computer performance (e.g. GPU) can train neural
networks with millions of weights

* Access to gigantic datasets
— Billions of images
— Training can take weeks!
* More complex ANNs
— Deep Convolutional Neural Networks (CNN)
— Long Short-Term Memory (LSTM) Recurrent Neural Networks
* Trendy vision applications

- * Emerging technologies offer opportunities .

Imagenet

ApprOX|mat|on Optlmlzatlon

[O. Temam, ISCA10]



So What’s New?

Complexity of Deep CNNs

* Deeper Networks

e 10-30 GOPS oo oo | com | com | cow | o | c n

— Mainlyconvolutions  [|HHEEEEEUENDEVEEEESE

* 10-200 MB DII

— Fully-connected layers

Alex Krizhevsky et al.,
Imagenet classification with
deep convolutional neural
networks, 2012.

89

Real Biological Neurons

it . . C ti 'y (]
* The brain seems to have something very special o

; nonlinear dynamics,
about energy efficiency Controlied cugery Synapses
Lee Sedol (brain) AlphaGo (CPU+GPU with tree lon channel e S S0
seach and deep neural networks) . )
~5nm / _ ‘,\.
<> X T~ ~
e i Y A
L7 s A | ?
EITT j-
* Brain computes with strong approximations (mostly analog)
* Computers: arithmetic but chiefly memory transfers

based on low power, slow, noisy and variable nano-devices
[D. Querlioz, CNRS]

[D. Querlioz, CNRS] !
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Humans Approximate....
But Computers Do Not!

float x = 923/21
% > floaty =
21 (x >y) ? YES :NO
e , I
o
923 float x = 923/21 @l
; > float y = S
>y) ? YES :NO )
7;[\%, L " But, | worked
(ﬁf than
P \_ needed
* Leads

(for many applications)

Approximate Computing

93

Many Applications are Error Resilient

* Produce outputs of acceptable quality
despite approximate computation
— Perceptual limitations

— Redundancy in data and/or computations

— Noisy inputs
* Digital communications, A =
media processing, data T
mining, machine @Vé\:" Q%%ﬁ
learning, web search, ..
e.g. Image Segmentation 94

Approximate Computing

* Play with approximations to reduce energy and
increase execution speed while keeping
accuracy in acceptable limits

— Relaxing the need for fully precise operations

* Design-time/run-time
* Abstraction levels

Cost Overhead
x
x
x
x
x
x

Application quality degradation

* Three dimensions to explore

Less accurate
a

Less up-to-date

Data

Accurate

Note: Precision (#bits) # Accuracy (quality) 96



K-Means Clustering Approximate K-Means Clustering

 Data mining, image * W = 16 bits, accuracy = 104

classification, etc. . e : H : i
i . . * No major (visible) difference with reference
* A multidimensional - ity
space is organized as: 5 g , a2
— k clusters S, : £ ey
— §,defined by its . S : N
centroid g S 2 2

* Finding the set of clusters s={S},c0._y
k

: s i e . ; ;
SatISfyl ng argsmln Zl Zs Iz = pea] Reference: double Floating-point: ct_floatg
1=1xe€S5; 3
is NP-hard (solved here by Lloyd’s iterations) ZoiLemonen;
97 11-bit mantissa 98

Approximate K-Means Clustering

Approximate K-Means Clustering

e W = 8 bits, accuracy = 10™*

* W =16 bits, accuracy =104
* 8-bit float is still practical

* No major (visible) difference with reference

%
S

Fixed-Point: ac_fixed;q Reference: double Floating-Point: ct_floatg
3-bit integer part 5-bit exponent 5-bit exponent
13-bit fractional part 11-bit mantissa 99 3-bit mantissa 100

Floating-point: ct_float,g



Approximate K-Means Clustering Deep Convolutional Neural Networks

* W = 8 bits, accuracy = 10™* : . Generalorganlzatlon
 8-bit float is better and still practical —

e S e v B
3 . # * Layers o | oy
| | | Il
Fixed-Point: ac_fixedg Floating-Point: ct_floatg =
3-bit integer part 5-bit exponent ol M
5-bit fractional part 3-bit mantissa 101 - [Motamed et al., 2016] 102
Resilience Approximate CNNs
Aoccdrnig to a rscheearch at Cmabrigde * 10k images, MNIST/Lenet
Uinervtisy, it deosn’t mttaer in waht oredr the * Fixed-Point Arithmetic
Itteers in a wrod are, the olny iprmoatnt tihng SEaETS 2t

is taht the frist and Isat Itteer be at the rghit
pclae. And we spnet hlaf our Ifie larennig how

to splel wrods. Amzanig, no! /RH—4
5 ? : W = 8 bits
* Our biological neurons are fault tolerant ‘ j .
x its

to computing errors and noisy inputs

103 W e . 104



Summary What's next?

* Dark Silicon is also an opportunity
— Heterogeneous manycore architectures

* Energy consun
— True in embec
— True in HPC, n

* End of Moore’s law...

* Efficiency of hardware specialization
— Domain-specific architectures and languages
* Computing just right

Dark Silicon — @design-time or @run- time
105 106

* Multicores but utilization wall

— Percentage of a chip that can switch
at full frequency drops exponentially

What’s next?

Emerging devices

Cells, brain, neurons have “analog” behavior

And compute with very low precision

Making neuromorphic computing more efficient

(o /[

— ‘ Memristors, — Spin

s phase Oxide ——Y Torque
Change - Resistive o :‘i[ ' Magnetic
Memory ; Memory =) Memory

\
\

(%
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